
An Efficient Knapsack-Based Approach for
Calculating the Worst-Case Demand of AVR Tasks

Sandeep Kumar Bijinemula∗, Aaron Willcock†, Thidapat Chantem∗, Nathan Fisher†
∗ Department of Electrical and Computer Engineering, Virginia Tech, Arlington, USA.

†Department of Computer Science, Wayne State University, Detroit, USA.
bsk1410@vt.edu, aaron.willcock@wayne.edu, tchantem@vt.edu, fishern@wayne.edu

Abstract—Engine-triggered tasks are real-time tasks that are
released when the crankshaft in an engine completes a rotation,
which depends on the angular speed and acceleration of the
crankshaft itself. In addition, the execution time of an engine-
triggered task depends on the speed of the crankshaft. Tasks
whose execution times depend on a variable period are referred
to as adaptive-variable rate (AVR) tasks. Existing techniques to
calculate the worst-case demand of AVR tasks are either inexact
or computationally intractable. In this paper, we transform the
problem of finding the worst-case demand of AVR tasks over a
given time interval into a variant of the knapsack problem to
efficiently find the exact solution. We then propose a framework
to systematically reduce the search space associated with finding
the worst-case demand of AVR tasks. Experimental results reveal
that our approach is at least 10 times faster, with an average
runtime improvement of 146 times, for randomly generated
tasksets when compared to the state-of-the-art technique.

Index Terms—Adaptive variable rate task, demand bound
function, worst-case demand, knapsack problem

I. INTRODUCTION

Resource management is a key consideration in any real-
time system. Pessimistic assumptions lead to overestimation
of workload, which results in underutilization of the resources.
On the other hand, workload underestimation can cause dead-
line misses. For a system with hard real-time requirements,
missing deadlines can be catastrophic. An example is the
powertrain control module (PCM) of a car. The ignition
system and fuel injection tasks, which are managed by the
PCM, are initiated based on the crankshaft’s relative position
with respect to fixed points in its path of rotation. As the
crankshaft’s angular speed increases, the crankshaft reaches a
given angle faster, hence increasing the number of job releases
in a given time interval. As a result, at higher speeds, a larger
number of jobs are released, and if not properly scheduled,
some jobs could miss their deadlines.

An engine’s behavior is generally more stable at higher
speeds due to frequent sensor and actuation updates. Hence,
jobs released at higher speeds may have lower execution
times [1]. To reflect this, the so-called engine-triggered tasks
are modeled to have smaller execution times as the speed
increases. In addition, as the speed increases, the time taken
to complete a rotation decreases and hence the inter-arrival
time between two consecutive jobs also decreases. Since
the traditional periodic task model [2] assumes a constant
time period for a task, applying it to define systems such
as a vehicle with PCM would result in overly pessimistic

𝝎𝒓𝒃𝟏 𝝎𝒓𝒃𝟐 𝝎𝒓𝒃𝟑 𝝎𝒓𝒃𝟒 𝝎𝒓𝒃𝟓

𝒄𝟏

𝒄𝟐

𝒄𝟑

𝒄𝟒

𝒄𝟓

𝒄𝒎

Speeds

Ex
e

cu
ti

o
n

 T
im

e
s

o
f

th
e

 M
o

d
e

s
𝝎𝒓𝒃𝒎𝝎𝒓𝒃𝟎

Fig. 1. Different modes of an AVR task where ci and ωrbi are the execution
time and the right boundary speed of the ith mode, respectively.

utilization. To tackle this, a model called the adaptive variable
rate (AVR) task model has been proposed to capture the
behavior of engine-triggered tasks. An AVR task is defined
by a set of modes, each of which is expressed by a range of
speeds [1] and a constant execution time as shown in Fig. 1.

To determine whether an AVR task is schedulable using
EDF, the demand bound function (dbf) is often used [3], [4] to
measure the resource requirement over a given time interval. In
a nutshell, dbf determines the worst-case aggregate execution
time of the jobs that have both the arrivals and deadlines within
a time interval [t1, t2]. In general, the calculation of the worst-
case demand of an AVR task is not straightforward. Let us
consider an example. In a time interval [t1, t2], assume 15
jobs are released at the highest allowable speed with each
job having an execution time of 50µs. On the other hand,
during the same duration, assume 10 job releases are possible
at the lowest speed with each job having an execution time of
100µs. The demand when the jobs are released at the lowest
speed (1,000µs) is greater than when the jobs are released at
the highest speed (750µs). Suppose instead that the jobs that
are released at the highest speed have an execution time of
70µs. In this case, the demand of these jobs is greater than
the demand of the jobs that are released at the lowest speed.
Hence, the demand depends on the relationship between the
task’s execution times and speeds, as well as the acceleration
profiles of the engine.

Several methods have been proposed to calculate the dbf of

an AVR task. Mohaqeqi et al. [5] proposed an exact analysis,
using the Digraph model [6], to transform an AVR task into a
digraph to calculate the exact worst-case demand assuming
that the crankshaft can have multiple acceleration values
during a rotation. While this approach represents the state-of-
the-art technique, it is computationally intensive and unlikely
to be suitable for large problem instances. In this paper, we
propose a knapsack-based method to efficiently calculate the
exact worst-case demand of an AVR task.
Contributions: The main contributions of this paper are:

1) To determine the worst-case demand of an AVR task, the
search for the dominant job sequence, i.e., one that re-
sults in the maximum demand over a given time interval,
is modeled as a bounded precedence constraint knapsack
problem. A dynamic programming based approach is
presented to exactly and efficiently solve the problem.

2) The number of job sequences that need to be considered
when calculating the worst-case demand of an AVR
task is significantly reduced by exploiting the kinematic
properties of the engine.

3) Experimental results based on existing AVR task sets as
well as randomly generated AVR task sets reveal that the
proposed approach significantly outperforms the state-
of-the-art technique [5] in terms of computation time.

The rest of the paper is organized as follows. In Section II,
we review key existing work pertaining to AVR tasks. In
Section III, we introduce the system model, discuss our
assumptions and formally present the problem. In Section IV,
we present a knapsack-based approach to find the worst-case
demand of AVR tasks. We provide some necessary conditions
to reduce the search space in Section V and describe the
dominant sequence set in Section VI. Experimental results
are presented in Section VII and the paper concludes in
Section VIII.

II. RELATED WORK

Usage of multiple worst-case execution times and periods
for engine-controlled tasks was first studied by Kim et al.
[7], where the authors proposed the rhythmic task model and
obtained schedulability results assuming the dependency of
a task’s attributes on external physical events. However, the
analysis is limited to a single AVR task scheduled along with
periodic tasks using rate monotonic scheduling algorithm in
which the AVR task has the highest priority.

Biondi et al. [8] presented the calculation of the worst-
case demand as a search problem in the speed domain and
the infinite number of paths in the search tree was narrowed
down by identifying certain paths that met a given criteria.
A similar method was applied using rate monotonic [3] and
EDF scheduling [4]. However, these works assume a constant
acceleration between two jobs releases, which does not always
result in the worst-case demand, as shown by Mohaqeqi et al.
[5]. In one of the first works on EDF scheduling of AVR tasks,
Guo and Baruah [9] developed a sufficient schedulability test
based on a speed-up factor analysis.

Identifying the fact that the exact speed of rotation of the
crankshaft may not be known, Biondi et al. [10] proposed two
methods to estimate the angular speed of the crankshaft. In
a recent paper [11], Biondi et al. proposed a task model for
expressing some practical features of engine control tasks and
presented schedulability tests for engine control applications
under EDF scheduling.

A complementary direction of research on AVR tasks was
undertaken by Biondi et al. [12], and focused on finding the
boundary speeds of the modes to maximize the performance
of the engine using an optimization based approach.

Mohaqeqi et al. [5] partitioned the speed domain and
constructed the corresponding digraph real-time (DRT) task
graph to determine the worst-case demand of the AVR task by
searching from each of the nodes of the DRT graph. Though
such an approach gives the exact value of the worst-case
demand of the AVR task, it considers many unnecessary paths,
resulting in long computation times. In this paper, we propose
an algorithm to obtain the speed partitioning and to select a
smaller subset of the paths considered by Mohaqeqi et al. [5]
to significantly reduce the computation time.

III. PRELIMINARIES

In this section, we provide some background materials on
the engine and its properties and introduce our task model.
We also formally define the problem.

A. Task Model

Adaptive variable rate (AVR) tasks are triggered at certain
angles with respect to the top dead center position of the
crankshaft, unlike periodic tasks which release jobs at regular
time intervals. For example, consider the different stages of
fuel ignition in a vehicle as shown in Fig. 2. For optimal
performance of the engine, fuel injection should occur at a
precise angle. As the rate of arrival of the crankshaft at a given
angle varies with its angular speed, AVR tasks do not have a
fixed period. Rather, at a higher speed, a larger number of
instances (i.e., jobs) of each task occur, potentially increasing
the resource requirement.

While it is possible to determine the schedulability of a
task set assuming that this increased resource requirement of
an AVR task is its steady-state demand, doing so would lead
to pessimistic analyses and hence resource underutilization.
Moreover, the engine is more stable at higher speeds [1]. This
allows jobs to have shorter execution times at higher crankshaft
speeds. Hence, the execution time of AVR tasks is modeled
as a function of the speed at which the jobs are released, as
shown in Fig. 1.

The range of speeds in which the execution time is constant
is referred to as a mode and the edge speeds of the mode
are referred to as the boundary speeds of the mode. The set
of speeds where the mode changes are defined as the set of
right boundary speeds, i.e., Ωrb = {ωrb1 , . . . , ωrbm}, ∀ω ∈
(ωrbi−1 , ωrbi], speed ω is in the ith mode. We further define
Ωrb(ω) to be all the right boundary speeds larger than ω that
are reachable (defined later in Section III). The minimum and

Fig. 2. Different stages of fuel ignition in a vehicle.

maximum allowable speeds of rotation of the crankshaft are
represented by ωrb0 and ωrbm respectively. For convenience,
we refer to them as ωmin and ωmax, respectively and assume
ω ≥ 0, ∀ω ∈ [ωmin, ωmax], where ω is assumed to be in
rev/min. In addition, the instantaneous speed at a given time
t is denoted as ω(t). A table of notations can be found in
Appendix B.

The maximum allowable acceleration and deceleration are
denoted by αmax and αmin, respectively, both assumed to
be in rev/min2. In this paper, we assume αmax = |αmin|.
The execution time of the ith mode is represented by ci.
Additionally, the execution time corresponding to a speed
ω(t), is denoted by c(ω(t)). We assume that a job is released
at the top dead center position, which we consider as the
beginning of the rotation. Thus, a job’s execution time is
determined by the speed of the crankshaft at the beginning
of its the rotation.

Property 1 (Speed After n Rotations): Given an initial speed
of ω(t) at time t and a constant acceleration α, the speed after
an angular displacement of ∆θ is [8], [13]

Ω(ω(t), α,∆θ) =
√
ω(t)2 + 2α∆θ. (1)

Similar to the work by Mohaqeqi et al. [5] we assume that
∆θ specifies the crankshaft revolution in terms of the number
of rotations, i.e., ∆θ = 1 indicates a complete rotation. Hence,
according to Equation 1, assuming an initial speed of ω(t) at
time t, and a constant acceleration of α, the speed after one
complete rotation is Ω1(ω(t), α) =

√
ω(t)2 + 2α. In general,

the speed after n complete rotations is [5],

Ωn(ω(t), α) =
√
ω(t)2 + 2nα. (2)

Biondi et al. [3] showed that multiple AVR tasks activated
by the same source and, which have the same angular phase
and period can be modeled as a single AVR task, called the
representative AVR task. Hence, the analysis in this paper can
also be extended to multiple AVR tasks.

B. Minimum Job Inter-arrival Times

The minimum inter-arrival time is the minimum time dura-
tion from the release of a job at t1 when the speed is ω(t1)
to the next job release at t2 and speed ω(t2). We denote
minimum inter-arrival time by T̃ (ω(t1), ω(t2)). In order to
overcome the drawback of using constant acceleration between
job releases as was assumed in most existing work [3], [4], [8],

(a) T̃ (ω, f)|ωp(ω, f) ≤ ωmax (b) T̃ (ω, f)|ωp(ω, f) > ωmax

Fig. 3. Minimum interarrival time T̃ (ω, f) between speeds ω and f where
(a) ωp(ω, f) ≤ ωmax and (b) ωp(ω, f) > ωmax. Ascending, flat, and
descending lines represent periods of maximum (αmax), zero, and minimum
(αmin) acceleration, respectively.

we consider the possibility of acceleration variations between
two job releases similar to the work by Mohaqeqi et al. [5].

The minimum inter-arrival time equation by Mohaqeqi et
al. [5] is briefly presented here using simplified notation for
readability. To get the minimum inter-arrival time from any
speed ω, the crankshaft has to be maximally accelerated from
ω to reach ωp, the peak speed, and then maximally decelerated
to reach a target speed f in a single rotation,

ωp(ω, f) =

√
2ω2 + 2f2 + 2αmax

2
. (3)

However, if ωp > ωmax, the crankshaft has to maximally
accelerate from ω to ωmax, stay at that speed for some time
and then maximally decelerate to f . The two cases are defined
below and presented in Figure 3:

T̃ (ω, f) = (4)
√

2ω2+2f2+4αmax−ω−f
αmax

ωp(w, f) ≤ ωmax

ωmax−f−ω
αmax

+ ω2+f2

2ωmaxαmax
+ 1

ωmax
ωp(w, f) > ωmax

Property 2 (Reversability of Inter-Arrival Times):
T̃ (ω(t1), ω(t2)) = T̃ (ω(t2), ω(t1)). In other words, the
minimum inter-arrival time from a job released at ω(t1) to a
job released at ω(t2) is equal to the inter-arrival time when
the speeds are in the reverse order.

C. AVR Task Demand

Let W be the set of all possible speed functions ω(t)
that are feasible (i.e., ω(t) is any continuous function with
acceleration between αmin and αmax and speeds between ωmin

and ωmax). For any such ω(t), considering that a computa-
tional job of an AVR task is released at time t′, we assume
that the processor must successfully complete execution of
this job by time t′ + T̃ (ω(t′),min(Ω1(ω(t′), αmax), ωmax));
that is, the absolute deadline of this job coincides with the
minimum time to complete a single rotation from a given
speed ω(t′). We refer to an AVR task that sets deadlines in
this way as a minimum angular deadline AVR task [11]
and refer to the relative deadline of a job released at speed
ω as d̃(ω) = T̃ (ω(t′),min(Ω1(ω(t′), αmax), ωmax)). We may
denote the demand of ω(t) over any δ-length interval [ta, tb]
as Dω(t)(ta, tb). Dω(t)(ta, tb) represents the total execution

requirement of jobs released by the speed function with both
arrival times and absolute deadline in the interval [ta, tb]. More
formally, if {t1, t2, . . .} is the set of times (in order) where the
crankshaft triggers job releases following the speed function
ω(t), then:

Dω(t)(ta, tb) =
∑

i:(ti≥ta)∧(ti+d̃(ω(ti))≤tb)

c(ω(ti)). (5)

We can compute the upper envelope on the demand over any
interval of length δ > 0 for ω(t) as:

dbfω(t)(δ) = max
t′≥0
{Dω(t)(t

′, t′ + δ)}. (6)

The worst-case demand of an AVR task over any δ-length
interval is the speed schedule that maximizes the value of the
upper envelope given in Equation 6:

dbf(δ) = max
ω(t)∈W

{dbfω(t)(δ)}. (7)

Considering any speed function ω(t) with job releases at
speeds/times ω(t1), ω(t2), . . . in some interval [ta, tb], it is
clear that if we modify the function so that the crankshaft
traverses one rotation in the minimum time (by Equation 4),
then this will only lead to demand that exceeds or equals the
original demand of ω(t). Therefore, without loss of generality,
we can restrict W to speed functions that traverse the rotation
between job releases in the minimum possible time. This is
essentially the observation made by Mohaqeqi et al. [5] to
reduce the problem of finding the worst-case ω(t) ∈ W to
the problem of identifying sequences of job release speeds;
i.e., the speed of the job releases entirely characterizes the
speed function. That is, we can completely describe any speed
function ω(t) with job releases at times t1, t2, . . . instead by a
sequence of speeds (ω1 = ω(t1), ω2 = ω(t2), . . .). Thus, after
this point, we drop the speed-time function ω(t) and focus
only on sequences of speeds.
The objective of this paper is to find an efficient way to calcu-
late the worst-case AVR task demand defined in Equation 7.

Definition 1 (Reachable Speeds): Consider two speeds ω1

and ω2 such that ω2 ≥ ω1. ω2 is said to be reachable from
ω1 if Ω1(ω1, αmax) ≥ ω2.

Definition 2 (Valid Sequence): A set of jobs j1, j2, j3, . . . , jk
released at speeds ω1, ω2, . . . , ωk is said to be a valid sequence
of speeds if ∀i ∈ Nk2 , ωi is reachable from ωi−1 where Nkj is
the set of natural numbers from j to k, i.e., {j, j + 1, . . . , k}.

D. Problem Definition

Consider a minimum angular deadline AVR task, which is
characterized by feasible speed [ωmin, ωmax] and acceleration
[αmin, αmax] ranges, where αmax = |αmin|, and a set of
modes Ωrb = {ωrb1 , . . . , ωrbm}, each of which is associated
with an execution time c(ωrbi), i = 1, . . . ,m, as discussed
earlier in this section. The objective is to find dbf(δ) (Equa-
tion 7), the worst-case demand of the AVR task over any δ-
length interval [ta, tb] assuming that the acceleration of the
crankshaft may change within a single rotation.

→ →→ → →

Fig. 4. Example items for our knapsack problem. A job that is higher in the
precedence relation is preceded by a job lower in the relation.

IV. KNAPSACK-BASED APPROACH FOR DERIVING THE
WORST-CASE DEMAND

We now describe the problem transformation from cal-
culating dbf(δ) to a variant of the knapsack problem. This
section both provides context for and relies upon several
properties and lemmas defined in Sections V and VI. Briefly,
dominant speed sequences are sequences of job release speeds
whose demand coincides with the value of Equation 7. These
dominant speed sequences are non-decreasing (see Section
V-B, Lemma 1) and start at right boundary speeds (see Section
V-C, Lemma 2).

In the traditional knapsack problem, the aim is to maximize
the total profit from a given set of items where each item
is associated with a profit and weight, while ensuring that
the aggregate weight is less than or equal to the maximum
allowable weight of the knapsack. Our goal is to transform
the problem of finding dbf(δ) into a variant of the knapsack
problem. In our case, a job is equivalent to an item. As such,
the “weight” of a job (i.e., item) is the minimum inter-arrival
time, and the “profit” is its execution time. The goal, then, is
to maximize demand (i.e., profit) over a time interval (δ).

Since a dominant speed sequence is non-decreasing
(Lemma 1), a job’s execution time may contribute to the
demand bound function dbf(δ) more than once. As such, our
knapsack problem is, in fact, a bounded knapsack problem.
In addition, since adjacent speeds in a dominant speed se-
quence must be reachable from one another (Definition 1),
once an item, i.e., job, has been included in the knapsack,
there is a finite number of jobs that can follow, making our
problem a bounded precedence constraint knapsack problem
(BPCKP) [14], [15]. Fig. 4 provides a visual example represen-
tation of our problem as a BPCKP. For clarity, the subscripts
of the speeds are used to denote the precedence constraints.

An effective way to model the precedence constraints
among jobs is by using out-trees. The sequences beginning
at each of the source nodes are independent of each other
(i.e., sequences beginning at each of the right boundary speeds
according to Lemma 2). An example out-tree is shown in Fig.
5. To represent the trees in a knapsack problem, we define a
dependency graph GI = (VI , AI), where VI denotes the set of
vertices (i.e., items) in the out-tree GI [16]. An edge between
any two vertices denotes that the two speeds are reachable

Fig. 5. Precedence constraints among jobs are expressed using out-trees.
Nodes represent WCETs for the initial speeds and arrows represent minimum
inter-arrival times. The tree demonstrates the various precedence relations and
possible paths. Leaves represent completion of the parent job without adding
subsequent jobs (i.e. items). Furthermore, each of the leaves has zero execution
since its parent is the final job included in the knapsack.

from one another and is represented by (j, k) ∈ AI . Formally,
our BPCKP can be expressed as follows:

maximize
x

∑
j

Mδ∑
r=1

c(ωj) · xrj (8)

subject to
∑

j,k|(j,k)∈AI

Mδ∑
r=1

T̃ (wj , wk) · xrk ≤ δ (9)

∑
k|(j,k)∈AI

x1
k ≤ 1, ∀j (10)

x1
j ≥ x1

k, ∀(j, k) ∈ AI (11)

xrj ≥ xr+1
j , ∀j, r ∈ {1, 2, 3, ...,Mδ − 1} (12)

xrj ∈ {0, 1}, ∀j, r ∈ {1, 2, 3, ...,Mδ} (13)

where Mδ represents an upper bound on the number of job
releases in a δ-length interval and xrj is a binary variable:
xrj is one if there are at least r jobs released at speed ωj in
the knapsack; otherwise, xrj is zero. Equation 8 maximizes
total demand. Equation 9 requires all deadlines of selected
jobs fall within the δ-length interval. Equation 10 permits at
most one child node of each parent node to be added to the
knapsack. Equation 11 enforces the precedence constraint such
that no child node may be added without its parent. Equation
12 ensures repeated jobs of a particular speed ωj are added
incrementally to (and do not skip indices of) xrj (i.e, if x`j = 0,
then for all s > ` : xsj = 0).

Algorithm 1 shows our pseudocode for the dynamic pro-
gramming approach to solve the bounded precedence con-
straint knapsack problem. The CalculateDemand function is
initially called with the parameters ω ∈ Ωrb and δ, the
total time length. The maxDemand parameter keeps track
of the highest demand computed until the current instance
of the recursive loop. In each recursive instance, the next
speed is chosen from the list of possible next job release
speeds according to Theorem 1 (Section VI). The variable Dw

(Equation 5) tracks the accumulated demand of the current
sequence.

Algorithm 1 DP for Calculating dbf(δ)
1: function CALCULATEDEMAND(ω,δ):
2: maxDemand ← 0
3:
4: if StoredDemand(ω, t) 6= φ then
5: return StoredDemand(ω,δ)
6:
7: if δ < d̃(ω) then
8: return 0
9:

10: for ω′ in nextPossibleSpeed(ω) do . See Theorem 1
11: δ ← δ − T̃ (ω, ω′)
12: Dw ← c(ω)+ CalculateDemand(ω′,δ)
13:
14: if Dw > maxDemand then
15: maxDemand ← Dw

16:
17: StoredDemand(ω,δ) ← maxDemand
18: return maxDemand

V. DOMINANT SPEED SEQUENCES

The previous section outlined how dominant speed se-
quences facilitate the problem transformation from calculating
dbf(δ) to a variant of the knapsack problem. This section
formally defines Lemma 1 and Lemma 2 referenced in the
above BPCKP approach.

The main challenge in determining the worst-case demand
of an AVR task is the variation in the execution time, which
varies as a function of the angular speed. Earlier work, e.g.,
Mohaqeqi et al. [5] showed that the speed sequences that
maximize demand contain only speeds from some finite set.
Mohaqeqi et al. used this set to design a DRT task which
considers all possible feasible sequences of speeds. However,
this can still lead to a large number of speed permutations
to check when searching for the worst-case demand. As
mentioned in the related work section, we show that we can
greatly limit the sequences that need to be considered in the
dominant speed sequence set when we consider minimum
angular deadline AVR tasks with αmax = |αmin|. A domi-
nant speed sequence is a speed sequence whose demand is
equivalent to the maximum demand of a task over a given
interval length (i.e., its demand coincides with the value of
Equation 7). A dominant speed sequence set is a set of speed

sequences that must contain the dominant speed sequence.
In this section, we derive the necessary characteristics of a
dominant speed sequence.

A. Properties of Minimum Inter-arrival Times and Deadlines

We begin by establishing some useful properties regarding
the minimum inter-arrival time function T̃ (ω, f) (Equation 4)
that will be used to prove some characteristics of dominant
speed sequences. The first property is that T̃ (ω, f) is always
positive, which was already proved in previous work on AVR
tasks [5]. We abuse terminology and refer to some lemmas as
properties to make supporting concepts easier to read.

Property 3 (Positive Minimum Inter-arrival Times): For all
ω, f ∈ [ωmin, ωmax],

T̃ (ω, f) > 0. (14)

We next show that T̃ (ω, f) is always non-increasing as we
increase either the starting speed ω or the ending speed f .

Property 4 (Minimum Inter-arrival Time Decreases with
Starting/Ending Speeds): For all ω, f ∈ [ωmin, ωmax],

∂T̃ (ω, f)

∂ω
≤ 0 and

∂T̃ (ω, f)

∂f
≤ 0. (15)

Proof: Observe that the partial derivative of T̃ with
respect to ω and f , respectively are:

∂T̃ (ω, f)

∂ω
=

{ 2ω√
4αmax+2f2+2ω2

−1

αmax
if ωp(w, f) ≤ ωmax

ω
ωmaxαmax

− 1
αmax

if ωp(w, f) > ωmax

(16)

∂T̃ (ω, f)

∂f
=

2f√

4αmax+2f2+2ω2
−1

αmax
ωp(w, f) ≤ ωmax

f
ωmaxαmax

− 1
αmax

ωp(w, f) > ωmax

(17)
The above partial derivatives are clearly always non-positive
for any ω, f ∈ [ωmin, ωmax].

We now focus upon the relative deadline of a job released
at speed ω (i.e., d̃(ω)). We can show that the relative deadline
decreases as we increase the speed the job is released at.
Furthermore, the rate of decrease for the relative deadline of
a job is faster than the rate of decrease in the minimum inter-
arrival time of the next job.

Property 5 (Rate of Change of Relative Deadline): For all
ω, f ∈ [ωmin, ωmax] where f is reachable from ω:

∂d̃(ω)

∂ω
< 0 and

∂d̃(ω)

∂ω
≤ ∂T̃ (ω, f)

∂ω
. (18)

Proof: First, consider the partial derivative of d̃(ω), given
below. It is clear from the expression that it is always negative
for all ω ∈ [ωmin, ωmax].

d̃(ω) =

√
ω2+2αmax−ω

αmax
d̃p(w) ≤ ωmax

− ω
αmax

+
ω2+ω2

max

2ωmaxαmax
+ 1

ωmax
d̃p(w) > ωmax

(19)
d̃p(ω) =

√
ω2 + 2αmax θ (20)

where d̃(ω) is derived from Equation 1 such that d̃(ω) =
Ω1(ω,αmax)−ω

αmax
if d̃p(w) ≤ ωmax and d̃(ω) = T̃ (ω, ωmax) if

d̃p(w) > ωmax.

∂d̃(ω)

∂ω
=

ω√

ω2+2αmax
−1

αmax
d̃p(w, f) ≤ ωmax

ω
ωmaxαmax

− 1
αmax

d̃p(w, f) > ωmax

(21)

where d̃ is derived by replacing f with Equation 1 in the
definition of minimum angular deadline AVR task when
d̃p(w) < ωmax. By supposition, f is reachable from ω; thus
by definition of reachable,

f ≤ Ω1(ω, αmax)
⇔ f ≤

√
ω2 + 2αmax

⇔ 2f2 ≤ 2ω2 + 4αmax

⇔ 4αmax + 2f2 + 2ω2 ≤ 4ω2 + 8αmax

⇔ ω
√

4αmax + 2f2 + 2ω2 ≤ 2ω
√
ω2 + 2αmax

⇔
ω√

ω2+2αmax
−1

αmax
≤

2ω√
4αmax+2f2+2ω2

−1

αmax

⇔ ∂d̃(ω)
∂ω ≤ ∂T̃ (ω,f)

∂ω

B. Speed Sequence Order Transformations

In this subsection, we describe how given a valid speed
sequence S = (ω1, ω2, . . . , ωn), we may transform it to one in
non-decreasing order without reducing the total demand of the
sequence. We begin with some notation that will be employed
in describing the transformations.

Definition 3 (Non-Decreasing Speed Sequence): Given any
valid, finite speed sequence S = {ω1, ω2, . . . , ωn}, we define
SA = (s1, s2, . . . , sn) to be the sequence obtained from
reordering the speeds of S in a non-decreasing order (i.e.,
s1 is the smallest ωi in S and sn is the largest). We call SA
a non-decreasing speed sequence of S.

We can show that for any valid sequence S (in arbitrary
speed order) the corresponding non-decreasing sequence SA
must also be valid.

Property 6 (Validity of Non-Decreasing Sequences): If S =
(ω1, ω2, . . . , ωn) is a valid sequence, then the non-decreasing
sequence SA is also valid.

Proof: For the sake of contradiction, assume that S is
valid, but SA is not. That means there exists some si ∈ SA
such that si+1 > Ω1(si, αmax). Furthermore, this also implies
that the following must be true ∀ `, k | 1 ≤ ` ≤ i < k ≤ n:

sk > Ω1(s`, αmax). (22)

This is to say that the ascending sequence, SA, is split between
indices si and si+1 which are not reachable from one another
such that it is impossible to reach speed si+1 or higher from
any speed si or lower. However, this contradicts the validity of
S. Since SA has non-decreasing order, no rearrangement of SA
will make the speeds any closer to one another and therefore
will not make previously unreachable speeds reachable. Thus,
S is also invalid.

We now provide some definitions that will be used to
compare S and SA.

(a) Leading Injection (b) Internal Injection (c) Final Injection

Fig. 6. A two-speed sequence, ω1, ω2, shown as dots, receives the (a) leading,
(b) internal, and (c) final, injection of ω3 shown as a square. Dashed, dotted,
and solid lines represent the added, removed, and unchanged minimum inter-
arrival times, respectively.

Definition 4 (k-Subsequence of S): Given any valid, finite
speed sequence S = {ω1, ω2, . . . , ωn}, for any k ∈ Nn1 , we
define S(k) = (ω

(k)
1 , ω

(k)
2 , . . . , ω

(k)
k) to be the k-subsequence

of S containing the k smallest elements of S in the same order
that they originally appear in S. (For example, S = (4, 3, 1)
would have S(2) = (3, 1)). Note that a k-subsequence of a
valid subsequence must also be valid itself. Similarly, SA(k)
has the kth smallest elements of S in non-decreasing order.

Definition 5 (Injection into a Subsequence): Given a k-
subsequence S(k) of an original sequence S, we consider the
addition of the (k + 1)th smallest element of S into S(k) to
create S(k + 1). We categorize the three possible injection
types as follows:

1) Leading Injection: If ω is the (k + 1)th smallest item
of S and it becomes the first element of S(k + 1).
That is, ω(k+1)

1 equals ω and ω
(k+1)
`+1 equals ω(k)

` for
all ` = 1, . . . , k. Figure 6(a) shows an example leading
injection.

2) Internal Injection: If ω is the (k+ 1)th smallest item of
S and it is neither the first nor last element of S(k +

1). That is, there exists some j ∈ Nk2 such that ω(k+1)
j

equals ω and ω(k+1)
` equals ω(k)

` for all ` = 1, . . . , j−1

and ω(k+1)
`+1 equals ω(k)

` for all ` = j, . . . , k. Figure 6(b)
shows an example internal injection.

3) Final Injection: If ω is the (k+ 1)th smallest item of S
and it becomes the last item of S(k+1). That is, ω(k+1)

k+1

equals ω and ω
(k+1)
` equals ω(k)

` for all ` = 1, . . . , k.
Figure 6(c) shows an example final injection.

Note that by definition, final injections of sk+1 into SA(k)
will maintain the non-decreasing property of SA(k). We will
refer to this later when constructing dominant sequences.

To compare the demand produced by two different se-
quences (with the same elements, but in different order), we
will look at the time of the absolute deadline of the last job in
the sequence under the assumptions that jobs of the sequence
arrive according to their minimum interarrival time (i.e., T̃)
and the first job is released at time instant zero. Let d(S) be
the last absolute deadline for sequence S = (ω1, . . . , ωn):

d(S) =

n−1∑
i=1

T̃ (ωi, ωi+1) + d̃(ωn). (23)

We can quantify how the d(S) function changes as we inject
elements of non-decreasing speed. Let ∆(S, k, k+1) represent

the amount that the d function increases when injecting the
(k + 1)th smallest element (sk+1) into S(k). That is,

∆(S, k, k + 1) = d(S(k + 1))− d(S(k)). (24)

We can compute the above difference based on the type of
injection that adding the (k + 1)th smallest element to S(k)
results in:

∆(S, k, k + 1) =

 ∆L(S, k, k + 1) if leading,
∆F (S, k, k + 1) if final,
∆I(S, k, k + 1) if internal,

(25)

where ∆L(S, k, k + 1) = T̃ (sk+1, ω
(k)
1) since we are adding

one segment to the front of S(k) in the leading injection;
∆F (S, k, k + 1) = T̃ (ω

(k)
k , sk+1) + d̃(sk+1) − d̃(ω

(k)
k) since

we are adding one segment to the end of S(k) and adjusting
the deadline of the last job for the new speed sk+1 for
a final injection; and ∆I(S, k, k + 1) = T̃ (ω

(k)
j−1, sk+1) +

T̃ (sk+1, ω
(k)
j)− T̃ (ω

(k)
j−1, ω

(k)
j) if we inject sk+1 into the jth

position of S(k), j ∈ Nk2 .
We are now prepared to compare the amount of time added

to the absolute deadline of the last job of the sequence, con-
sidering k-subsequences S and SA and injecting the (k+1)th

smallest element (sk+1) into both of these sequences for each
of the three types of injections.

Property 7 (Leading Injection Suboptimality): For any valid,
finite sequence S = (ω1, . . . , ωn), for all k = 1, . . . , n− 1:

∆L(S, k, k + 1) ≥ ∆F (SA, k, k + 1). (26)

Proof: In this property, we have a leading injection into
S(k). However, observe that d̃(sk+1) ≤ d̃(sk) by Property 5
and since sk+1 is larger than any element of S(k). Further-
more, T̃ (ω

(k)
k , sk+1) ≥ T̃ (sk, sk+1) since, by Property 4, T̃

is a decreasing function in its parameters and sk is at least as
large as any item in S(k). Also, by Property 2, T̃ (ω

(k)
k , sk+1)

equals T̃ (sk+1, ω
(k)
k). By the above observations, we get:

T̃ (sk+1, ω
(k)
k) + d̃(sk) ≥ T̃ (sk, sk+1) + d̃(sk+1)

⇔ T̃ (sk+1, ω
(k)
k) ≥ T̃ (sk, sk+1) + d̃(sk+1)− d̃(sk)

The LHS and RHS of the last inequality matches Equa-
tion 26 and the lemma is proved.

Property 8 (Internal Injection Suboptimality): For any valid,
finite sequence S = (ω1, . . . , ωn), for all k = 1, . . . , n− 1:

∆I(S, k, k + 1) ≥ ∆F (SA, k, k + 1). (27)

Proof: Observe that by Properties 2 and 5, T̃ (f, ω+ ε) ≥
d̃(ω+ε) for all f, ω and ε > 0. Also, T̃ (sk+ε, ω) = T̃ (ω, sk+
ε) for all ω and ε > 0 by Property 2. These properties imply
that:

T̃ (sk−1, sk) + T̃ (sk, sk) + d̃(sk)

= T̃ (sk−1, sk) + T̃ (sk, sk) + d̃(sk)

⇒ T̃ (sk−1, sk + ε) + T̃ (sk + ε, sk) + d̃(sk)

≥ T̃ (sk−1, sk) + T̃ (sk, sk + ε) + d̃(sk + ε)
(28)

Setting ε = sk+1−sk and substituting into the above inequality
of Equation 28, we get the following:

T̃ (sk−1, sk+1) + T̃ (sk+1, sk) + d̃(sk)

≥ T̃ (sk−1, sk) + T̃ (sk, sk+1) + d̃(sk+1)

⇒ T̃ (sk−1, sk+1) + T̃ (sk+1, sk)− T̃ (sk−1, sk)

≥ T̃ (sk, sk+1) + d̃(sk+1)− d̃(sk)

⇒ T̃ (ω
(k)
j−1, sk+1) + T̃ (sk+1, ω

(k)
j)− T̃ (ω

(k)
j−1, ω

(k)
j)

≥ T̃ (sk, sk+1) + d̃(sk+1)− d̃(sk)

(29)

The last inequality (which implies Equation 27 of the property)
above follows from observing that according to Property 4, the
following is true for all ω and ω′:

∂T̃ (ω,sk+1)
∂ω ≤ ∂T̃ (ω,ω′)

∂ω

⇔ ∂T̃ (ω,sk+1)
∂ω + ∂T̃ (sk+1,ω

′)
∂ω − ∂T̃ (ω,ω′)

∂ω ≤ 0

Thus, the LHS of the second inequality of Equation 29 will
not decrease if we substitute ω(k)

j−1 for sk−1 in the LHS. For
symmetric reasons, we can also substitute ω(k)

j for sk.
In this next property, we show that any sequence may

decrease the time of its last deadline by moving the highest
speed job to the end (if it is valid). The proof of this property
is in the appendix.

Property 9 (Highest-Speed Relative-Deadline Dominance):
For any valid, finite sequence S = (ω1, . . . , ωn), if ω`
(` ∈ Nn1 − 1) is the highest speed sn and not the last speed
of sequence S and sn ≤ Ω1(ωn, αmax) then new sequence
S′ with the highest element moved to the last element (i.e.,
S′ = (ω1, . . . , ω`−1, ω`+1, . . . , ωn, sn)) is valid and has the
following property:

d(S) ≥ d(S′). (30)

We are now ready to state the main lemma of this subsec-
tion. That is, for any dominant speed sequence, we can find
another dominant speed sequence with equivalent demand that
is in ascending order.

Lemma 1 (Dominant Non-Decreasing Speed Sequences):
Given a valid, dominant speed sequence S = (ω1, ω2, . . . , ωn)
over interval [ta, tb], the sequence SA is valid and has equiv-
alent demand.

Proof: The proof is by induction on k. For each k ∈ Nn1 ,
we show that for any k-subsequence S′(k) containing the same
elements of S(k) such that d(S(k)) ≥ d(S′(k)), the following
is true:

d(S(k)) ≥ d(S′(k)) ≥ d(SA(k)). (31)

This implies the lemma, since if the deadline of the last job
of S is before tb, then the last job of SA must also be before
tb; therefore, the demand over the interval does not decrease
when reordering S to non-decreasing order.
Base Case: Consider when k = 1, clearly S(1) = SA(1) =
(s1). Thus, Equation 31 is vacuously true.
Induction Hypothesis: Assume that Equation 31 holds up to
some k < n for all S′(k) containing the same elements of
S(k) such that d(S(k)) ≥ d(S′(k)).

Inductive Step: We need to show that Equation 31 is true for
k + 1. Let S′(k) be any k-subsequence. We now consider
injecting sk+1 into S′(k) and SA(k). (Note that SA and S′A
are identical subsequences). There are three cases depending
on the type of injection into S′(k).

Case 1 (Leading Injection): By Property 7, ∆L(S′, k, k +
1) ≥ ∆F (SA, k, k + 1). Therefore, by the Induction Hy-
pothesis, d(S′(k + 1)) = d(S′(k)) + ∆L(S′, k, k + 1) ≥
d(SA(k)) + ∆F (SA, k, k + 1) = d(SA(k + 1)).

Case 2 (Internal Injection): By Property 8, ∆I(S
′, k, k +

1) ≥ ∆F (SA, k, k + 1). Therefore, by the Induction Hy-
pothesis, d(S′(k + 1)) = d(S′(k)) + ∆I(S

′, k, k + 1) ≥
d(SA(k)) + ∆F (SA, k, k + 1) = d(SA(k + 1)).

Case 3 (Final Injection): By Property 9, there exist a valid
sequence S′′(k) obtained from S′(k) by moving the highest
term (sk) to the end of S′′(k) where d(S′(k)) ≥ d(S′′(k)). (If
S′(k) already had sk as its last term, then S′′(k) = S′(k)).
By Induction Hypothesis, d(S′′(k)) ≥ d(SA(k)). Since the
last term on S′(k) and SA is identical, ∆F (S′, k, k + 1)
equals ∆F (SA, k, k + 1). Observe that ∆F (S′, k, k + 1) ≥
∆F (S′′, k, k + 1) since the last element in S′′ is sk and
Property 5 implies S′′ will have less time added to its deadline.
Therefore, we have d(S′(k))+∆F (S′, k, k+1) ≥ d(S′′(k))+
∆F (S′′, k, k + 1) ≥ d(SA(k)) + ∆F (SA, k, k + 1). Hence,
d(S′(k + 1)) ≥ d(SA(k + 1)).
In all the cases, we show that for all S′ such that d(S(k+1)) ≥
d(S′(k)) ⇒ d(S′(k)) ≥ d(SA(k)) which proves the lemma.

C. Starting Speed of a Dominant Sequence

Lemma 2 (Starting Speeds of a Dominant Sequence):
For any non-decreasing dominant sequence Sorig over the
interval [ta, tb] where the first k jobs (denoted Sorig =
(ω1, ω2, . . . ωk)) are released in the ith mode, the sequence
obtained by replacing this first k jobs with jobs released at the
right boundary speed of mode i, i.e., ωrbi , does not decrease
the demand of the sequence in [ta, tb].

Proof: Recall that the original sequence is Sorig =
(ω1, ω2, . . . ωk). The new sequence, i.e., the one obtained
by replacing the first k speeds with jobs released at
the right boundary speed of mode i is simply Snew =
(ωrbi , ωrbi , . . . , ωrbi). Since c(ω1) = c(ω2) = . . . = c(ωk) =
c(ωrbi), the demand of the first k jobs of Sorig = k · c(ωrbi),
which is the identical to the demand of the first k jobs of
Snew .

Let us assume that the entire (original) sequence has n jobs,
where k ≤ n. If k = n, the lemma is proved. For k < n, we
need to prove that when we replace the first k speeds with jobs
released at ωrbi , the demand of the entire sequence does not
decrease. Since T̃ (ωrbi , ωrbi) ≤ T̃ (ωti , ωti+1

) by Property 4,
the release of the k′th job, 1 ≤ k′ ≤ k, occurs earlier
in the new sequence and the relative deadline is decreased
(Property 5). As such, the deadline of the jobs released at
speed ωrbi will have its deadline in the interval [ta, tb] if the
jobs released at ω(ti), i = 1, . . . , k did. Therefore, the demand

of the entire new sequence is no less than the demand of the
entire old sequence and the lemma is proved.

D. Speeds in Subsequent Modes of a Dominant Sequence

Lemma 1 eliminated all the decreasing speed sequences
from consideration for the dominant sequence. Furthermore,
Lemma 2 showed that the initial speed(s) of a dominant
sequence must correspond to right boundary speeds. We now
show the speed sequence pattern in the dominant sequence for
subsequent modes.

Lemma 3 (Speeds Between Right Boundary Speeds in a
Dominant Sequence): Consider a non-decreasing dominant
speed sequence, S, for an interval [ta, tb] where k + 1
jobs of mode i > 1 are released at non-decreasing speeds
ω`, ω`+1, . . . , ω`+k. The previous job release is from a lower
mode h(< i); i.e., ω`−1 ≤ ωrbi−1 , and the subsequent job
release ω`+k+1 is from some higher mode r > i or does not
exist (i.e., the sequence ends at ω`+k).

The sequence obtained by replacing the `th through (` +
k)th jobs of the sequence as follows is valid, non-decreasing,
and has demand no less than the original sequence: ∀ j ∈
{`, . . . , `+ k}, replace the speed for ωj with

ω′j = min(ωrbi ,Ω1(ωj−1, αmax)). (32)

Proof: The proof is by induction on j.
Base Case: Consider j = `. If we replace ωj with ω′j according
to Equation 32, then the speed is reachable from ω`−1 (by the
second term in the min of Equation 32). Thus, the sequence
remains valid up to ω′` with this replacement. Clearly, ω′` ≥
ω`−1; so, the sequence remains non-decreasing up to ω′`.

In addition, the sequence ω1, . . . , ω`−1, ω
′
` has equivalent

demand to the sequence ω1, . . . , ω`−1, ω` since the minimum
time between ω`−1, ω′` is reduced (Property 4) and the exe-
cution of this subsequence is equivalent since c(ω′`) = c(ω`).
Furthermore, since the release of the `th job occurs earlier
in the new sequence and the relative deadline is decreased
(Property 5), the deadline of job released at speed ω′` will
have its deadline in the interval [ta, tb] if the job released at ω`
in the original sequence did. Therefore, the new subsequence
demand is no less than the original sequence demand.
Induction Hypothesis: Consider using Equation 32 to replace
ω`, . . . , ω`+k′ with ω′`, . . . , ω

′
`+k′ for some k′ : 1 < k′ < k.

Assume these replacements result in a valid, non-decreasing
sequence up to ω′`+k′ ; furthermore, the resulting job releases
up to ω′`+k′ has demand no less than the original sequence.
Inductive Step When k′ + 1 < k: Consider replacing ω`+k′+1

with ω′`+k′+1. By construction of Equation 32, ω′`+k′+1 is
reachable and non-decreasing from ω′`+k′ . Thus, the new
subsequence remains valid up to ω′`+k′+1. Using an identical
argument to the base case, it is clear that the demand of the
sequence is no less when compared to the original subsequence
up to the (`+ k′ + 1)th job release.
Inductive Step When k′ + 1 = k: In this special (terminating)
case of the inductive step, we also show that the entire
sequence is valid, non-decreasing, and has unchanged demand.
The same steps of the case for k′+1 < k can be used to show

that the subsequence up until (and including) ω′`+k is valid,
non-decreasing, and equivalent in demand.

We first show that the entire sequence is non-decreasing. All
that is required is to show that ω′`+k ≤ ω`+k+1. (The induction
hypothesis shows the previous portion is non-decreasing and
speeds after ω`+k+1 are already non-decreasing by supposition
of the lemma). If ω`+k+1 does not exist, we are finished.
Otherwise, observe that since ω`+k+1 is in a mode higher
than mode i, it must have speed exceeding ωrbi . By the first
term in the min in Equation 32, ω′`+k ≤ ω`+k+1.

To prove validity of the entire sequence, observe that each
of the replaced speeds in the sequence exceed or equal
the original speed. Thus, ω′`+k ≥ ω`+k. This implies that
Ω1(ω′`+k, αmax) ≥ Ω1(ω`+k, αmax) ≥ ω`+k+1. The last
inequality is due to ω`+k+1 being reachable from ω`+k in
a single rotation. Therefore, it follows that ω`+k+1 is still
reachable for ω′`+k.

By the same reasoning for k′ + 1 = k case, the demand
for jobs 1, 2, . . . , ` + k is unchanged since the deadline of
each job occurs earlier, as jobs are released earlier and the
relative deadline of each job is shorter due to the replaced job
occurring at a higher speed. Similarly, the jobs after ` + k
have the same execution time (their speed is unchanged), and
are released earlier due to the shortened inter-arrival times of
jobs `, . . . , ` + k. Thus, if any of the jobs after ` + k had
their absolute deadline in [ta, tb], they continue to have their
deadline in the interval; the demand of the entire sequence
does not decrease after replacing the jobs.

VI. THE DOMINANT SEQUENCE SET

The previous section derived the necessary properties of a
dominant speed sequence but the lemmas do not explicitly
tell us what the actual dominant speed sequence is. In this
section, we define the dominant sequence set which was used
in Section IV to define the precedence constraint knapsack
problem as a set of speed sequences that must contain the
dominant speed sequence. Theorem 1 below will formally
characterize this set.

First, let us give some notation. Let Ψ be an ordered set of
speeds (non-decreasing order of speed) called the dominant
speed set formally defined as follows:

Ψ = {Ωn(ωrbi , αmax)|(n ∈ N0) ∧ (ωrbi ∈ Ωrb)} . (33)

Let ωk be a speed in some non-decreasing speed sequence
S obtained from using speeds in Ψ, nextPossibleSpeed(ωk)
be a function that returns a set of valid subsequent speeds
ωk+1 from the set Ψ that we need to consider given that we
released a job in a speed sequence at speed ω ∈ Ψ. We define
ω0 to be a sentinel speed to indicate that we are choosing
the first speed of the sequence next. Intuitively, Lemma 2
implies that we must start with a right boundary speed; thus,
nextPossibleSpeed(ω0) should be the set of right boundary
speeds. For any other k > 0, if ωk is a right boundary speed,
Lemma 2 implies (as we will show in Theorem 1) that we
may either remain at that right boundary speed, transition
to a (reachable) right boundary speed of a higher mode, or

accelerate maximally to the next reachable speed. For an ωk
that is not a right boundary speed, we may only transition
to a (reachable) right boundary speed of a higher mode, or
accelerate maximally to the next reachable speed. Formally,

nextPossibleSpeed(ωk) ={
Ωrb if k = 0
{Ω1(ω, αmax)} ∪ {ωrbi ∈ Ωrb(ωk)} if k > 0

(34)
where, Ωrb(ωk) as defined earlier denotes the set of reachable
right boundary speeds from ωk. Please note that Ωrb(ωk) can
return ωk as a member of the set if ωk is a right boundary
speed; i.e., a right boundary speed is reachable from itself.

Let S(δ) be a set of speed sequences defined as follows:
(ω1, . . . , ω|S|) ∈ 2Ψ |(
∀k ∈ N|S|−1

0 , ωk+1 ∈ nextPossibleSpeed(ωk)
)

∧
(∑|S|−1

`=1 T̃ (ω`, ω`+1) + Ω1(ω|S|, αmax) ≤ δ
)

(35)

Theorem 1: The set S(δ) must contain a dominant speed
sequence for any interval of length δ > 0.

Proof: The correctness of the theorem lies in proving that
nextPossibleSpeed(ωk) always returns a dominant sequence.
By Lemma 1 only non-decreasing sequences are considered.

In Equation 34, k ≥ 0. According to Lemma 2, the first
speed of a dominant sequence must be a right boundary speed,
this proves Equation 34 when k = 0. We need to prove it when
k > 0.

When k > 0, there are several possibilities for the kth speed:
Case 1 (kth job is the first job in mode i > 1): In this

case, (k − 1)th speed may or may not be a right boundary
speed. Applying Equation 32, kth speed will be replaced by
min(Ω1(ωk−1, αmax), ωrbi), proving Equation 34 for Case 1.

Case 2 (kth speed is the right boundary speed of mode i):
Equation 32, when applied for ωk will guide us to replace ωk
by ωk itself because we assumed ωk = ωrbi , proving Case 2.

Case 3 (kth speed is an intermediate speed in the middle of
mode i): This case follows on the application of Equation 32.

In addition, only jobs that are released and whose deadlines
fall within an interval of length δ can be part of the dominant
sequence. This can be verified by examining the definition of
the demand bound function dbf(δ) in Equation 7.

Together, Lemmas 1, 2, and 3 allow for elimination of
unnecessary sequences from the dynamic programming search
while Theorem 1 ensures the sequences produced by Algo-
rithm 1 are dominant speed sequences whose demand coincide
with Equation 7.

VII. EVALUATION

In this section, we compare our algorithm against the
DRT algorithm [5], which is the state-of-the-art technique
for solving the problem under consideration. Our approach
explores a subset of speeds considered by Mohaqeqi et al. [5],
and so we inherit the same upper bound on number of speeds:
O
(
m · ω

2
max−ω

2
min

2·αmax

)
. Even though our algorithm shares sim-

ilar complexity with the DRT algorithm with respect to the

TABLE I
TASK SET USED BY EXISTING WORK [5], [8]

ith mode 1 2 3 4 5 6 ωrbm

ωrbi 500 1500 2500 3500 4500 5500 6500
c(ωrbi) 965 576 424 343 277 246

TABLE II
A MORE GENERAL TASK SET.

ith mode 1 2 3 4 5 6 ωrbm

ωrbi 1200 2200 3200 4200 5200 6200 7200
c(ωrbi) 965 576 424 343 277 246

speeds, we eliminate several unnecessary traversals through
these speeds, which significantly reduces the computational
complexity of our algorithm. We compare the accuracy and
runtime of the algorithms using two experiments. For all
experiments, a maximum acceleration of 600,000 rev/min2 and
maximum deceleration of -600,000 rev/min2 were assumed as
in previous work [3]–[5], [17]. In each experiment, the worst-
case demand is calculated for 100 time intervals in [0, 1s] in
steps of 10 ms. The experiments were performed using Python
3.6.5 on a 3.40 GHz, quad-core processor with 8 GB of RAM.
While the results are platform dependent, the general trend
showing the relative performance of the proposed approach
against the DRT algorithm should be representative. Each
experiment is run 10 times and the average values are reported.
The code and the original data used for this publication can
be found on the artifact evaluation page [18].

In the first experiment, two task sets were used. The first
task set appeared in existing publications [5], [8] (Table I).
Note that this task set is not ideal, as some boundary speeds
can be reached from the others in an integer number of
rotations using maximum acceleration, which simplifies the
search for the worst-case demand. The results are shown in
Table III(a). Though both approaches were able to find the
worst-case demand, our algorithm is 13.5 times faster.

Since the first task set is not ideal, as described earlier,
we created another task set (Table II). This task set is more
general in the sense that the right boundary speeds are not

TABLE III
RUN TIME COMPARISON OF DIFFERENT ALGORITHMS

Demand (in µs) over [0,1s] Runtime
DRT Alg. 26,568 3 min. 31 sec.
Our Alg. 26,568 15.63 sec.

(a) An existing task set

Demand (in µs) over [0,1s] Runtime
DRT Alg. 35,892 17 min. 2 sec.
Our Alg. 35,892 19 sec.

(b) A more general task set

Fig. 7. Graph depicting the runtime of different algorithms as a function of
the number of modes of randomly generated AVR task sets. For each mode,
the 95% confidence interval is shown.

reachable from one another in integer number of rotations
when using αmax. Hence, we expect that the algorithms will
require longer running times to find the worst-case demand of
this task set. The results are shown in Table III(b). As before
both approaches were able to find the worst-case demand but
our algorithm is 53.8 times faster.

For the second experiment, we generated multiple AVR
tasks using an algorithm presented by Biondi et al. [3]. In
this algorithm, multiple AVR tasks are modeled as a single
task, called the representative AVR task, by combining the
execution times and the boundaries speeds. The modes of the
representative AVR task are generated by assuming a fixed
value of 0.25 for the maximum utilization factor of the modes.
Again, the same worst-case demands were found by both
algorithm, but overall, our approach is 146 times faster on
average and up to 250 times faster, as shown in Fig. 7.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented an efficient method for calculating
the exact worst-case demand bound function of AVR tasks.
First, a knapsack-based dynamic programming approach was
proposed to efficiently find the worst-case demand. Second,
a collection of necessary conditions were presented, which
reduce the search space of the knapsack-based approach to
find the dominant sequence set. Experimental results confirm
that the proposed approach is exact and is faster than the state-
of-the-art technique. In the future, we plan on analyzing the
worst-case demand of AVR tasks that have different phases
and which are released by independent sources.

ACKNOWLEDGEMENTS.

This research was supported in part by the US National
Science Foundation (CNS Grant Nos. 1618185 & 1618979)
and a Thomas C. Rumble Graduate Fellowship from Wayne
State University.

REFERENCES

[1] D.Buttle, “Real-time in prime-time,” keynote speech at the 24th Euromi-
cro Conference on Real-Time Systems, Pisa, Italy, July 12, 2012.

[2] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” J. ACM,
vol. 20, no. 1, pp. 46–61, Jan. 1973. [Online]. Available:
http://doi.acm.org/10.1145/321738.321743

[3] A. Biondi, M. Di Natale, and G. Buttazzo, “Response-time analysis for
real-time tasks in engine control applications,” in Proceedings of the
ACM/IEEE Sixth International Conference on Cyber-Physical Systems,
ser. ICCPS ’15. New York, NY, USA: ACM, 2015, pp. 120–129.
[Online]. Available: http://doi.acm.org/10.1145/2735960.2735963

[4] A. Biondi, G. Buttazzo, and S. Simoncelli, “Feasibility analysis of
engine control tasks under edf scheduling,” in 2015 27th Euromicro
Conference on Real-Time Systems, July 2015, pp. 139–148.

[5] M. Mohaqeqi, J. Abdullah, P. Ekberg, and W. Yi, “Refinement of
Workload Models for Engine Controllers by State Space Partitioning,”
in 29th Euromicro Conference on Real-Time Systems (ECRTS
2017), ser. Leibniz International Proceedings in Informatics (LIPIcs),
M. Bertogna, Ed., vol. 76. Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2017, pp. 11:1–11:22. [Online].
Available: http://drops.dagstuhl.de/opus/volltexte/2017/7159

[6] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The digraph real-time task
model,” in 2011 17th IEEE Real-Time and Embedded Technology and
Applications Symposium, April 2011, pp. 71–80.

[7] J. Kim, K. Lakshmanan, and R. R. Rajkumar, “Rhythmic tasks: A
new task model with continually varying periods for cyber-physical
systems,” in Proceedings of the 2012 IEEE/ACM Third International
Conference on Cyber-Physical Systems, ser. ICCPS ’12. Washington,
DC, USA: IEEE Computer Society, 2012, pp. 55–64. [Online].
Available: http://dx.doi.org/10.1109/ICCPS.2012.14

[8] A. Biondi, A. Melani, M. Marinoni, M. D. Natale, and G. Buttazzo,
“Exact interference of adaptive variable-rate tasks under fixed-priority
scheduling,” in 2014 26th Euromicro Conference on Real-Time Systems,
July 2014, pp. 165–174.

[9] Z. Guo and S. Baruah, Uniprocessor EDF scheduling of AVR task
systems. Association for Computing Machinery, Inc, 4 2015, pp. 159–
168.

[10] A. Biondi and G. Buttazzo, “Real-time analysis of engine control
applications with speed estimation,” in 2016 Design, Automation Test
in Europe Conference Exhibition (DATE), March 2016, pp. 193–198.

[11] A. Biondi and G. Buttazzo, “Modeling and analysis of engine control
tasks under dynamic priority scheduling,” IEEE Transactions on Indus-
trial Informatics, pp. 1–1, 2018.

[12] A. Biondi, M. Di Natale, and G. Buttazzo, “Performance-driven design
of engine control tasks,” in Proceedings of the 7th International
Conference on Cyber-Physical Systems, ser. ICCPS ’16. Piscataway,
NJ, USA: IEEE Press, 2016, pp. 45:1–45:10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2984464.2984509

[13] H. C. Verma, Concepts of Physics - Vol. 1. Bharati Bhawan Publishers
and Distributors, 2010.

[14] G. Cho and D. X. Shaw, “A depth-first dynamic programming
algorithm for the tree knapsack problem,” INFORMS Journal on
Computing, vol. 9, no. 4, pp. 431–438, 1997. [Online]. Available:
https://doi.org/10.1287/ijoc.9.4.431

[15] D. S. Johnson and K. A. Niemi, “On knapsacks, partitions, and
a new dynamic programming technique for trees,” Mathematics of
Operations Research, vol. 8, no. 1, pp. 1–14, 1983. [Online]. Available:
https://doi.org/10.1287/moor.8.1.1

[16] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Springer
Berlin Heidelberg, 01 2004.

[17] R. I. Davis, T. Feld, V. Pollex, and F. Slomka, “Schedulability tests
for tasks with variable rate-dependent behaviour under fixed priority
scheduling,” in 2014 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS), April 2014, pp. 51–62.

[18] S. K. Bijinemula, A. Willcock, T. Chantem, and N. Fisher, “Code
for the paper-efficient knapsack-based approach for calculating the
worst-case demand of avr tasks,” 2018. [Online]. Available: https:
//github.com/bsk1410/Efficient-Knapsack-for-AVR-tasks-RTSS2018

APPENDIX

A. Proof of Property 9
The property is restated here for readability.
Property 9 (Highest-Speed Relative-Deadline Dominance):

For any valid, finite sequence S = (ω1, . . . , ωn), if ω`
(` ∈ Nn1 − 1) is the highest speed sn and not the last speed
of sequence S and sn ≤ Ω1(ωn, αmax) then new sequence
S′ with the highest element moved to the last element (i.e.,
S′ = (ω1, . . . , ω`−1, ω`+1, . . . , ωn, sn)) is valid and has the
following property:

d(S) ≥ d(S′). (36)

Proof: Consider a valid, finite sequence S =
(ω1, . . . , ωn), where ω` (` ∈ Nn1 − 1) is the highest speed sn
and not the last speed of sequence S and sn ≤ Ω1(ωn, αmax).

Let S be constructed as described in the statement of
the lemma: S′ = (ω1, . . . , ω`−1, ω`+1, . . . , ωn, sn). Observe
that S′ is valid since sn is reachable from ωn; also, since
Ω1(ω`−1, αmax) ≥ sn ≥ ω`−1 and Ω1(ω`+1, αmax) ≥ sn ≥
ω`+1, which implies that ω`−1 and ω`+1 are reachable from
each other.

We define ∆H(S, S′) to be the difference d(S)− d(S′):

∆H(S, S′) = T̃ (ω`−1, sn) + T̃ (sn, ω`+1) + d̃(ωn)

−T̃ (ω`−1, ω`+1)− T̃ (ωn, sn)− d̃(sn).
(37)

We now prove that ∆H(S, S′) ≥ 0 which proves Equa-
tion 36 of the property. Let sn−1 and sn−2 be the second and
third largest speed of S, respectively.

The rest of the proof is nearly identical to Property 8.
Observe that by Properties 2 and 5, T̃ (f, ω + ε) ≥ d̃(ω + ε)
for all f, ω and ε > 0. Also, T̃ (sk + ε, ω) = T̃ (ω, sk + ε) for
all ω and ε > 0 by Property 2. These properties imply that:

T̃ (sn−2, sn−1) + T̃ (sn−1, sn−1) + d̃(sn−1)

= T̃ (sn−2, sn−1) + T̃ (sn−1, sn−1) + d̃(sn−1)

⇒ T̃ (sn−2, sn−1 + ε) + T̃ (sn−1 + ε, sn−1) + d̃(sn−1)

≥ T̃ (sn−2, sn−1) + T̃ (sn−1, sn−1 + ε) + d̃(sn−1 + ε)
(38)

Setting ε = sn − sn−1 and substituting into the above
inequality of Equation 38, we get the following:

T̃ (sn−2, sn) + T̃ (sn, sn−1) + d̃(sn−1)

≥ T̃ (sn−2, sn−1) + T̃ (sn−1, sn) + d̃(sn)

⇒ T̃ (sn−2, sn) + T̃ (sn, sn−1)− T̃ (sn−2, sn−1)

≥ T̃ (sn−1, sn) + d̃(sn)− d̃(sn−1)

(39)

Seeing that both ω`−1 and ω`+1 are at most sn−1 and either
one of ω`−1 and ω`+1 must be less than sn−2, we get:

T̃ (ω`−1, sn) + T̃ (sn, ω`+1) + d̃(ωn)

−T̃ (ω`−1, ω`+1)− T̃ (ωn, sn)− d̃(sn) ≥ 0
(40)

The last inequality (which implies Equation 37 of the property)
above follows from observing that according to Property 4, the
following is true for all ω and ω′:

∂T̃ (ω,sk+1)
∂ω ≤ ∂T̃ (ω,ω′)

∂ω

⇔ ∂T̃ (ω,sk+1)
∂ω + ∂T̃ (sk+1,ω

′)
∂ω − ∂T̃ (ω,ω′)

∂ω ≤ 0

B. Table of Notation and Units

Symbol Term Unit

ω Angular speed rev/min
ωrb Right boundary speed rev/min
Ωrb Set of right boundary speeds N/A
ωmax Maximum angular velocity rev/min
α Angular acceleration rev/min2

αmax Maximum angular acceleration rev/min2

αmin Minimum angular acceleration rev/min2

t Time sec.
ω(t) Instantaneous angular velocity rev/min
c(ω(t)) Worst-case execution time sec.
θ Angular position rev

∆θ Change in angular distance rev
Ωn Angular velocity at the end of ‘n’ rotations rev/min
T̃ Minimum interarrival time sec.
ωp Peak angular velocity rev/min
f Angular velocity at the end of a rotation rev/min

d(ω) Relative deadline sec.
Dω Demand sec.
dbf Demand Bound Function sec.
δ Time interval length sec.
Nkj Number set j, j + 1, ..., k N/A
GI Dependency graph N/A
VI Vertices N/A
AI Edges N/A
η Number of job releases N/A
Z+ Positive integers N/A
S Speed sequence N/A
si Job release speed rev/min

∆L Leading injection N/A
∆F Final injection N/A
∆I Internal injection N/A

