
Tensity-Aware Optimized Scheduling of Parallel
Real-Time Tasks on Multiprocessors

Anway Mukherjee†, Tanmaya Mishra†, Thidapat Chantem†, Nathan Fisher‡
†Department of Electrical and Computer Engineering, Virginia Tech, USA.

Email: {anwaym, tanmayam, tchantem}@vt.edu
‡Department of Computer Science, Wayne State University, USA.

Email: fishern@wayne.edu

Abstract—The federated scheduling framework is a popular
multicore scheduling policy for parallel periodic real-time tasks
that are often modeled as directed acyclic graphs (DAGs).
However, it often over-estimates the processing requirements
of parallel task execution, resulting in acute resource under-
utilization of available processing capacity in an already resource-
constrained system. In this work, we aim to reduce resource
under-utilization by proposing HL-DAGs, where compatible DAG
tasks are fused and transformed into a fork-join DAG task model
to opportunistically reclaim the usable utilization of the system.
HL-DAGs, however, may fail to meet a task’s timing requirements
and impact the schedulability of the system. To tackle this
challenge, we present a technique to enforce both the logical and
timing correctness requirements of a HL-DAG task. In addition,
we discuss a fixed-priority partitioned scheduling algorithm (HL-
FED) to schedule HL-DAGs, along with other DAG tasks, on
multicore systems. Simulation results indicate that HL-FED can
improve the usable system utilization by 27% on average, and up
to 33%, over existing DAG scheduling frameworks. In addition,
our proposed solution can also tighten the processing capacity
by up to 11% when compared to the state-of-the-art federated
scheduling framework.

I. INTRODUCTION

Multicore architectures can often be used to improve the
performance by utilizing all the available processor cores. In
parallel real-time applications, there is an additional need to
meet the strict timing constraints, while simultaneously im-
proving the usable system utilization. Directed acyclic graphs
(DAGs) [1] elegantly capture the parallel execution patterns in
such applications while providing highly deterministic timing
guarantees. The DAG task model can be used to express
both inter-task and intra-task parallelism. Several existing
DAG-based scheduling policies have been shown to provide
improved schedulability, alongside higher performance (for
instance, reduced resource utilization), over the utilization-
based task scheduling algorithms [2], [3].

The federated scheduling algorithm [4] is a popular DAG
task scheduling framework that targets the parallelizable sec-
tions of a task by scheduling them on multiple processors
for concurrent execution. In federated scheduling, a DAG task
is categorized as either a heavy task which has a utilization
greater than 1, or a light task with utilization less than or
equal to 1. Each heavy task is assigned a dedicated number

This work was supported in part by the National Science Foundation under
grant numbers CNS-1618979 and CNS-1618185.

of cores to fully utilize their scope for parallel processing
without competing for shared processors. Conversely, the light
tasks are grouped together as tasks with strictly sequential
execution and scheduled on the rest of the available core(s).
While the federated scheduling framework exploits the high
intra-task, and inter-task, parallelism to improve the overall
system performance, it often over-estimates the processing
requirements of heavy tasks, and the scheduler ends up ded-
icating up to almost double the cores to a heavy task than
their actual utilization demand [5]. This can result in an acute
under-utilization of usable resources in an already resource-
constrained embedded system.

Recent works by Jiang et.al. [5], [6] addresses the resource
over-utilization problems associated with federated scheduling
by computing more tightly the processor demands of heavy
tasks, albeit with certain caveats. Given a heavy DAG task
with utilization U + ε, a federated scheduler assigns at least
U + 1 dedicated processors to feasibly schedule the task. In
contrast, the work in [5] presents a semi-federated scheduling
policy which partitions the heavy task τh into two sub-tasks,
τa and τb, with utilization values U and ε, respectively, before
assigning U cores to τa, and one or more core(s) (previously
assigned to τh) to schedule τb along with rest of the tasks
in the task set. However, partitioning DAG tasks using the
heuristic technique in [5] may result in sub-optimal solutions.
Conversely, optimal solvers are expensive and time consum-
ing. Moreover, the advantages of a semi-federated scheduling
policy decreases with increasing system core count.

Another recent work [6] extends federated scheduling to a
mixed scheduling framework where tasks are scheduled based
on their tensity values. A tensity value [6] of a DAG is the
ratio of its critical path length to its assigned deadline. A new
DAG scheduling algorithm was proposed that heuristically
categorizes tasks into groups and scheduled using different
scheduling strategies such that (1) heavy and light DAG tasks
with low tensity values are scheduled using the global earliest
deadline first (G-EDF) [7] algorithm, while (2) the rest of the
DAG tasks in the task set (i.e., tasks with high tensity values)
are scheduled using the federated scheduling approach. While
this approach greatly improves the DAG task schedulability
bounds, its major drawback is that it still suffers from the over-
estimation problem for DAG tasks with relatively high tensity
values as will be shown in Section III. Moreover, no strict
tensity bound within which this algorithm [6] can improve the978-1-5386-5541-2/18/$31.00 ©2020 IEEE

schedulability of DAG tasks was given.

A sustainable DAG task scheduling algorithm, therefore,
must find a judicious trade-off between (1) improved schedu-
lability, while (2) assigning cores to fully utilize their available
processing capacity. We aim to improve upon the existing
work by presenting a novel task transformation technique, and
a multicore scheduling policy (HL-FED) to feasibly schedule
DAG tasks while improving resource utilization. Our approach
is based on the key observation that the tensity of a DAG
task is a major indicator of its existing intra-task parallelism.
Tensity is also a major bottleneck in fully utilizing the
available parallelism on a federated scheduling framework
as is evident in [6]. Contrary to the task partitioning policy
in [5], our solution proposes a novel technique that fuses a
heavy DAG task with a compatible light task, irrespective of
their tensity values (as opposed to [6]), and transforms the
fused task into a fork-join [8] DAG task (HL-DAGs). We also
present a technique to enforce the correct timing and logical
requirements of the individual tasks that constitute a fused
task. Moreover, we leverage the efficient fork-join schedul-
ing algorithm in [8] to devise a multicore task assignment
and scheduling algorithm ((HL-FED) to feasibly schedule the
transformed HL-DAG tasks.

The advantages of our novel DAG transformation technique
are manifold; first, the fork-join DAG task model requires
simple scheduling policies, with negligible time overhead
due to reduced concurrency. Second, a fork-join DAG task
can limit the existing intra-task parallelism in the original
DAG tasks as long as the assigned tensity and deadline are
met. This allows us to accurately compute the processor
demands of a DAG without over-estimating the task utilization
demand. Third, the fork-join DAG task model finds relevance
as a popular industrial standard for parallel task execution
in high-performance computing (HPC), and is recently being
used for embedded real-time applications that support parallel
programming (e.g., OpenMP, JVM-based Scala etc. [9]–[11]).
Our main contributions are as follows.

1) We present an approach to fully utilize the processing
capacity of processing cores in DAG task scheduling by
forming HL-DAGs, which involves fusing together a heavy
DAG task with a compatible light DAG task, and transform-
ing the resultant fused DAG into a fork-join DAG task.
We also describe a task model to represent the HL-DAG
task, and discuss a technique to enforce logical and timing
correctness.

2) We propose an offline fixed-priority task partitioning and
scheduling technique called HL-FED for multicore systems.
We also validate our approach and assess its performance in
a custom-built simulated environment. We show that our ap-
proach never performs worse, and in fact often outperforms
the widely used most relevant scheduling approaches [2],
[5], [6] for parallel applications modeled as DAGs with high
tensity values in a multicore system.

Fig. 1. (a) A simple example of a normal DAG task; (b) Example of a
special case of a DAG task, also called a fork-join DAG task. The number
in parentheses associated with each vertex denotes the worst-case execution
time of each sub-task. The complete paths highlighted in green denote the
critical path of individual DAGs.

II. PRELIMINARIES

This section presents the relevant background details on two
task models that can efficiently capture the inter- and intra-
task parallelism that exists in real-time applications, along with
their precedence constraints.

A. Directed Acyclic Graphs (DAG)

A synchronous real-time DAG task is defined as τg =
(V ,E, Tg). The variables V and E are the set of vertices
and edges of the DAG τg , respectively. Tg is the strict time
period of execution for the overall task τg . Since, in this
work, we consider real-time tasks with implicit deadlines, we
will assume that task deadline equals task period Tg . We also
assume data independent DAGs to solely concentrate on intra-
task parallelism. However, our proposed model can also be
easily extended to DAGs with inter-task parallelism.

Each vertex v ∈ V represents a sub-task which delimits the
sequential execution. Henceforth, we will use the terms sub-
task and vertex interchangeably unless otherwise specified.
Each vertex v ∈ V , is associated with a weight C(v) which
represents the worst-case execution time (WCET) of the sub-
task. We assume that the DAG task τg has a unique start (or
the source vertex) vertex vs ∈ V which has no predecessor,
and a unique end (or a sink vertex) vertex ve ∈ V which
has no successor. Any DAG task with multiple start (or end)
vertices can be transformed to adhere to the said assumption
by adding in an pseudo start (or end) vertex that becomes the
immediate predecessor (or successor) of the existing start (or
end) vertices. Each edge (u, v) ∈ E captures the precedence
relationship between the execution of two vertices u and v.
Therefore, u is the immediate predecessor of v, and similarly,
v is the immediate successor of u. We assume that each edge
(u, v) ∈ E of the DAG task τg does not have an associated
weight. Next, we revisit a set of properties associated with the
DAG task model.

We use π to denote a set of sequential paths of execution
in the DAG τg . A sub-set of paths πc represents all complete
paths wherein each path’s first vertex is the source vertex

vs and last vertex is the sink vertex ve . The length of a
path denoted by span(τg) represents the length of the longest
complete path in the task τg such that,

span(τg) = max
πc∈π

{∑
v∈πc

C(v)

}
(1)

The complete path that contributes to span(τg) is also called
the critical path. We assume that each DAG task has one
and only one critical path. We use work(τg) to represent the
aggregate WCETs of all the vertices of a DAG task τg such
that,

work(τg) =
∑
v∈V

C(v) (2)

For a DAG task τg , its overall utilization U (τg), and
assigned tensity ω(τg) are given by,

U(τg) =
work(τg)

Tg
(3)

ω(τg) =
span(τg)

Tg
(4)

The DAG task τg can be categorized as either a heavy
task when U (τg) > 1 , or a light task when U (τg) ≤ 1 . In
this work, we consider both heavy and light DAGs to be
independent synchronous tasks with implicit deadlines. The
minimum number of cores p ∈ P required to feasibly schedule
a DAG task τg using any work-conserving algorithm is given
by [4],

p =

⌈
work(τg)− span(τg)

Tg − span(τg)

⌉
(5)

Note that the fraction inside the ceiling function in Equation 5
increases proportionally with increasing span(τg) values for a
fixed work(τg) and Tg in a DAG 1. Figure 1(a) shows a normal
DAG task structure where A is the source vertex (vs) and G
is the sink vertex (ve). The complete path πc = {A,C ,D ,G}
is the critical path of the DAG. Therefore, the values span(τg)
and work(τg) for the DAG are 10 and 17 respectively.

B. Fork-Join DAG Task Model

The fork-join DAG task model is a unique subset of the ba-
sic DAG task model. A fork-join DAG task combines together
two classical tree structures, namely, the in-tree structure and
the out-tree structure, thereby conforming to a hybrid DAG
task structure. The fork-join DAG finds use in many parallel
programming applications, and can successfully capture the
timing parameters of complex inter- and intra-task execution
patterns [8]. Fork-join DAGs have been frequently used to
model parallel execution in the OpenMP framework, and pro-
vides excellent schedulability and timeliness guarantees [9],
[11].

Figure 1(b) shows a fork-join DAG task, and is defined as
τg = (V ,E,Tg). The terms V , E, and Tg have the same
meanings as described in Section II-A. In addition, a fork-
join DAG task τg has a fork phase of execution that spawns

1For all a, b ∈ Z>0 , a
b
< a−1

b−1
when a > b.

Fig. 2. A motivating example where two DAG tasks, heavy and light, are fused
together and transformed into a fork-join DAG task resulting in improved
schedulability.

a number of parallel sub-tasks from a single predecessor
sub-task, and a join phase of execution where the output
edges of said parallel sub-tasks spawned in the fork phase
converge to a single successor sub-task. In Figure 1(b), A
is the source vertex and K is the sink vertex. The complete
path πc = {A,C ,F ,H ,K} is a critical path of the DAG τg .
Therefore, the values span(τg) and work(τg) for the DAG are
8 and 18 respectively.

The sub-tasks of a fork-join DAG task can also be catego-
rized into levels l ∈ L where each level l strictly maintains
the following rules [12], [13]; (1) exactly one sub-task of
the critical path can exist in each level l of the DAG, (2)
all other sub-tasks in level l that are not in the critical path
are data independent from one another, and (3) every sub-
task of the DAG must be assigned to a level. For instance, the
fork-join task in Figure 1(b) has l = 5 levels, where each level
corresponds to either a fork phase or a join phase of execution.

III. MOTIVATIONS

The effectiveness of the federated scheduling approach in
fully utilizing the given processing capacity, i.e., available
processors, is heavily dependent on the degree of intra-task
parallelism that may exist in a heavy DAG task. In the
worst-case scenario, a federated schedule can lead to more
than half the system resources being wasted on heavy DAG
tasks. The problem is further aggravated when high tensity
heavy DAG tasks are scheduled using a federated scheduling
algorithm. That is, we observe that for any given heavy
DAG task with implicit deadline, if we increase the length
of its critical path, and in turn its tensity, then the minimum
number of cores required to feasibly schedule the DAG using
a federated scheduling policy also increases as reported in the
explanation for Equation 5 (in Section II-A). Jiang et.al. [6]
proposed a utilization-tensity (UT) schedulability bound to
amortize the overall resource wastage in federated scheduling.
However, Jiang’s approach categorically fails to achieve any
improvement on heavy DAGs with considerably high tensity
values as shown in our results in Section VI-C.

For our motivating example, consider a task set consisting
of a heavy DAG task τh, along with a light DAG task τl

as shown in Figure 2. Both tasks have an assigned period
of 11 time units. Also assume that the task set is being
scheduled using the federated scheduling algorithm. Therefore,
the utilization U(τh), and tensity ω(τh) values of the DAG task
τh are 1.27 and 0.9 respectively, and the minimum number of
cores required to feasibly schedule task τh using the federated
scheduling framework is calculated to be 4 using Equation 5.
Similarly, the light task τl is assigned to a separate core. Thus,
we require at least 5 processor cores to successfully schedule
the given example task set. However, in reality only 3 cores
are needed. Such a scheduling approach, therefore, can lead to
more than half of the total processing capacity being wasted.
Moreover, the same example task set when scheduled using
the UT scheduling approach, fails to reduce any utilization
wastage since τh is a heavy task with high tensity value,

We tackle such a resource under-utilization problem by
proposing a novel DAG task fusion-and-transformation tech-
nique to improve the usable utilization of the system within the
federated scheduling framework. Given a set of DAG tasks,
our proposed approach, first, groups a heavy DAG task τh
with a compatible light task τl to form a task tuple (τh, τl).
Then we combine the DAGs in said tuple to improve the
intra-task parallelism of the resultant fused DAG. Finally, we
transform the fused DAG into a HL-DAG task that conforms
to a fork-join DAG task model to limit the required number of
processing cores for a feasible schedule while still improving
the achievable task parallelism in the task set. For our example
task set in Figure 2, fusing the heavy DAG task τh with
the light task τl may inadvertently result in a DAG task (in
Step I) that will require considerably more processing cores
(7 processors in our case) for a feasible federated schedule.
This is due to an increased parallelism in the resultant fused
DAG. Hence, there is a need to transform our fused DAG task
into a fork-join DAG task model (Step II of Figure 2) which
has the following advantages; (1) effectively limit the intra-
task parallelism in DAGs, and (2) leverage existing scheduling
approaches [8] to derive a tighter processor demand bound.
For example, the transformed DAG task in Step II of Figure 2
will require only 3 processing cores using the partitioned
scheduling policy in [8] while still adhering to the federated
scheduling framework.

While DAG task fusion-and-transformation results in re-
duced resource wastage, such a modification, however, may
change the collective period of the fused tasks under consid-
eration, and increase the total utilization of the task set. This
can potentially result in violating the timing requirements of
the individual tasks. We address these challenges next.

IV. OFFLINE HL-DAG TASK TRANSFORMATION

We construct a heavy-light (HL)-DAG task to amortize the
grave under-utilization of processing capacity in federated
scheduling while maintaining logical and timing correctness.
A HL-DAG is defined as a real-time DAG task formed by
(1) fusing together a heavy DAG task with a compatible light
DAG task, and (2) transforming the fused task into a fork-join
DAG task. We exploit the existing works that provide high

timeliness guarantees during parallel task execution in fork-
join DAGs to tightly bound the desired processing capacity
of HL-DAG to improve resource utilization in a federated
scheduling framework. In this section, we first introduce a
HL-DAG task and its transformation process, followed by its
representation using a real-time task model, and discuss its
timing and logical correctness. Finally, we present a technique
to select which tasks to fuse, and transform into HL-DAGs in
order to maximize the schedulability of the system. Note that
for a given task set, the process of creating HL-DAG tasks is
carried out once offline.

A. Overview and Requirements of Task Fusion

In a federated scheduling framework, light tasks cannot
utilize the resources dedicated exclusively to heavy tasks. This
may lead to acute resource wastage if heavy tasks cannot fully
utilize the resources assigned to them. We tackle this problem
by fusing a heavy DAG task with a light DAG task so that
both tasks can improve the overall resource utilization. In this
section, we discuss how to fuse a heavy DAG task τh with a
compatible light DAG task τl together. The question on which
two DAG tasks to fuse together will be addressed later in
section IV-D. We focus on independent DAG tasks with no
inter-task data dependency for fused DAG task construction
in this work.

To help us ensure logical correctness during the process
of task fusion, we list the following set of constraints. First,
as discussed in Section II-A, we consider a synchronous
periodic DAG task set consisting of both heavy tasks and
light tasks with implicit deadlines. Second, all sub-tasks in
the resultant fused DAG task must preserve the precedence
relationship as observed in the original heavy DAG task,
thereby maintaining the original DAG task structure. We only
need to preserve the precedence constraints of each heavy task
since all light tasks are considered to have sequential execution
in federated scheduling algorithm. Third, the fused DAG task
must maintain a unique start vertex and a unique end vertex
to adhere to the DAG task model assumptions described in
Section II-A. Finally, the length of the critical path of the
fused DAG task must be equal to the critical path length of the
original heavy DAG task. This ensures timing correctness in
that the light DAG task’s execution context starts and finishes
within the execution context of the heavy task. We plan to
redress this restriction in future work. Step I of Figure 2 shows
an example process of task fusing, where a heavy DAG task
τh with implicit deadline of 11, is fused with a light DAG task
τg with the same deadline.

However, fusing two DAG tasks and executing them to-
gether within a common execution context may lead to an
increased contention of processing capacity shared between
the two tasks. Federated scheduling would tackle such an
increase in computational interference by dedicating additional
processors to feasibly schedule the fused DAG as shown in our
motivating example in Section III. Conversely, we propose a
structural transformation technique that can limit the additional

parallelism introduced into the fused DAG due to task fusion
process as shown next.

B. Maintaining Logical Correctness

In the previous section, we showed that a naive introduction
of additional sub-tasks within the execution context of a heavy
DAG task through task fusion may increase the overall system
utilization. To tackle this challenge, we present a structural
transformation technique where a fused DAG task is modified
into a HL-DAG task that conforms to the fork-join model of
parallel execution as shown in Step II of Figure 2. It is based
on the observation that the fork and join phases of execution
in a fork-join DAG have different degrees of parallelism,
and therefore have different processor utilization efficiency.
The fork phase captures a highly parallel execution context,
and may require multiple processors to fully accomplish the
required parallelism. Conversely, the join phase consists of
serialized execution on a single processor. We propose a
heuristic transformation of DAG task structures that exploits
said observation to find a judicious trade-off that can utilize
the available parallelism with negligible increase in required
processing capacity.

Step I in Figure 2 shows a fused DAG task before transfor-
mation, where the light task B is currently an independent sub-
task in the DAG that requires parallel execution. Therefore, it
can either (1) execute on a separate core, thus, increasing the
required processing capacity, or (2) potentially interfere with
the execution of the rest of the sub-tasks in the DAG by sharing
the available processors, possibly leading to missed deadlines.
The amount of interference that a critical path in a DAG can
withstand, without missing its deadline, can be quantified by
the available slack in the DAG. The slack is defined as the
temporal difference between a DAG deadline and its span. For
instance, our example fused DAG in Figure 2 has a slack of 1
time units. Our DAG transformation policy assigns the parallel
execution within the fork phase of the HL-DAG to fully exploit
the allocated processing capacity, while any contention in the
critical path due to shared resources is assigned to the join
phase, and predictably upper-bounded by the existing slack in
the DAG. Step II in Figure 2 shows the construction of our
HL-DAG task. We start with the fused DAG task in Step I. To
construct a HL-DAG task that aligns with the fork-join model
of execution, we insert a pseudo vertex ‘X’ which denotes a
sub-task with WCET given by C (X) = 0. If the WCET of the
light task was 3+σ, we could easily split it in two sequential
sections, one with WCET 3 (added to the fork phase) and the
rest of the execution context σ within the join phase, where
the value of sigma is upper-bounded by the available slack
(in our case, 1) in the DAG reflected by C (X) = σ.

C. Maintaining Temporal Correctness

While the previous section focused on maintaining the
logical correctness of the individual tasks after HL-DAG
transformation, we now explore the timing correctness of such
a transformation technique. Let us reconsider our motivating

TABLE I
TASK SET 1

Task (τ) C T

τl 3 21
τh 14 11

TABLE II
MODIFIED TASK SET 1

Task (τ) Cpeak Cnml T l

τhl 17 14 11 1

example in Section III where the corresponding task set con-
sists of two synchronous and independent tasks; a heavy DAG
task τh and a light DAG task τl. Since both tasks have the same
period, it is easy to run τl within the execution context of τh
while meeting individual task deadlines. However, in reality,
tasks can have different periods assigned to them. In such a
case, there are two scenarios associated with scheduling the
HL-DAG that may pose challenges for upholding the temporal
correctness: (1) scheduling the HL-DAG with τl’s period, say
with larger period, may be logically incorrect since τh, with
smaller period, needs to run more frequently, and similarly,
(2) executing the HL-DAG with τh’s period may result in
unnecessary resource usage since τl, with larger period, needs
to run less frequently. Therefore, it is important to ascertain
the time intervals between τh and τl within which can execute
the HL-DAG, while at other times we run only τh since it is the
task with a lower period. We leverage a variant of the multi-
frame task model [14] to model the execution of a HL-DAG
task as τhl = (Thl, C

peak
hl , Cnml

hl , lhl). The term Thl is defined as
the period of the HL-DAG task τhl, and is set as min{Th ,Tl}.
The execution time parameter Cpeak

hl corresponds to the WCET
of a frame when the fused-and-transformed execution context
of both τh and τl is running, and is calculated using equation 6.
Conversely, Cnml

hl corresponds to the WCET of a frame when
the fused-and-transformed execution context is not running,
and is calculated using the equation 7. The parameter lhl
captures the minimum inter-peak frame distance such that
every lhl consecutive frames contain at most one peak frame.

Cpeak
hl = C(τh) + C(τl) (6)

Cnml
hl = C(τh) (7)

lhl =
⌊ Tl
Thl

⌋
(8)

Example #1 : Let us consider two tasks, a heavy DAG task
τh and a light DAG task τl, with time periods 11 and 21
respectively. The other real-time parameter(s) of the tasks in
this task set are given in Table I. We will now use Equations 6–
8 to generate the real-time parameters for the HL-DAG task
τhl . Therefore, we have Cpeak

hl = 17 and Cnml
hl = 14.

Similarly, Thl is set to 11 since min{Th ,Tl} = 11. From
Equation 8, we know that lhl equals to 1, and the task HL-
DAG maintains temporal correctness as long as each (Thl · lhl)
time interval contains at most one Cpeak frame as shown
in Figure 3(a). Note that even though the WCETs of each
execution frame is greater than its time period, the illustration
in Figure 3(a) assumes that a multicore scheduling algorithm
can fully exploit the existing intra-task parallelism to ensure
that the DAG frame completes within its deadline. At time 0,

!"

11 22 33 44

21 42

11 22 33 44

0

0

0

!" !" !"

!# !#

$"#%&'($"#)*# $"#%&'($"#)*#

!"

11 22 33 44

11 22 33 44

0

0

0

!" !" !"

!#

$"#%&'($"#)*# $"#%&'($"#)*#

!#

12

!#

24

!#

36

(a) (b)

Fig. 3. Example execution instants of HL-DAG for (a) task parameters in
Table II, and (b) task parameters in Table IV.

TABLE III
TASK SET 2

Task (τ) C T

τl 3 12
τh 14 11

TABLE IV
MODIFIED TASK SET 2

Task (τ) Cpeak Cnml T l

τhl 17 14 11 1

both job of τh and τl have been released allowing HL-DAG to
execute its Cpeak

hl frame. In contrast, at time 11, the HL-DAG
will have to run its Cnml

hl frame since a new job instance of
τl is yet to be released. The next Cpeak

hl frame can only be
formed at time 22. The same pattern is repeated after every
hyperperiod of τhl (the least common multiple of the periods
of τh, τl). The modified task set is shown in Table II.

D. Finding HL-DAG Candidates

While the DAG transformation technique reduces the col-
lective processor under-utilization, such a modification may
change the collective period of the individual DAG tasks
under consideration, thereby, leading to incorrect timeliness.
For instance, in Example #1 (Section IV-C), even though a
new job of task τl is released at time 21 (in Figure 3(a)),
it can only start within the next frame of HL-DAG (Cpeak) at
time 22. Therefore, it is important to bound the delay between
the release time and the start time for such a DAG task to
maintain temporal correctness. Let us consider the task set
in Table III where the modified task set (Table IV) after HL-
DAG transformation is illustrated in Figure 3(b). While the job
instance of τl is ready at time 12, it will only get to execute at
a delayed time 22 within the corresponding Cpeak frame, and
will fail to meet the deadline set at 24 since C(τl)= 3. Thus, we
must have at least one job of τh completely contained within
each period of τl to guarantee the timeliness of individual tasks
τh and τl. The following lemma 1 [15] must be satisfied to
select compatible DAG tasks for HL-DAG construction.

Lemma 1: ([15]). Let us consider a HL-DAG candidate,
which consists of the task-tuple {τh, τl}. If Th ≤ Tl and
2 · Th − gcd(Th, Tl) ≤ Tl where gcd() denotes the greatest
common divisor, then each job of the HL-DAG candidate with
period Th is guaranteed to meet the individual deadlines of
tasks τh and τl.

For our HL-DAG candidates {τh, τl}, the period is set at
min (Th ,Tl), and the work(τl) ≤ span(τh) (Section IV-C).

V. HL-FED: A FEDERATED SCHEDULING FRAMEWORK

Following a successful HL-DAG transformation process, any
given task set in our proposed solution can have the following
types of real-time DAGs; HL-DAG tasks, and the rest of heavy
and light DAG tasks in the task set that could not be fused and
transformed into HL-DAGs. Therefore, we propose a multicore
scheduling framework that can feasibly schedule such mixed
DAG task sets. In this work, we extend the existing federated
scheduling framework to improve the overall usable system
utilization while providing a tighter processor demand bound
to ensure timeliness guarantees.

Figure 4(a) describes our proposed solution. We divide our
approach into two phases. In the first phase, we leverage an
existing deadline-based fixed-priority partitioned scheduling
policy [8] to schedule HL-DAGs on a dedicated subset of
available processing cores. We opt for partitioned scheduling
since it has the advantage of reducing the multiprocessor
scheduling problem to scheduling on individual processors. We
focus on partitioned scheduling where each sub-task of the HL-
DAG task is statically assigned to a processor core based on
its deadline. Each sub-task deadline is assigned using our local
deadline assignment policy described in Section V-A. While
the scheduling algorithm in [8] uses the first-fit decreasing
(FFD) to heuristically assign sub-tasks to processors, our
approach uses an offline first-fit non-decreasing (FF) sub-task
to core assignment policy. Our proposed algorithm works as
follows; (1) all the sub-tasks in the critical path are allocated
to a separate individual processor, while (2) the remaining
sub-tasks are heuristically bin-packed into the rest of the
processing cores based on FF task assignment policy. Finally,
the sub-tasks in each processor are scheduled through a
local deadline-based fixed-priority scheduling algorithm (DM-
FF). Our choice of DM-FF is based on the observation that
both dynamic- and static-priority scheduling perform similarly
for fork-join model of DAG task execution. In the second
phase, we use the utilization-tensity based mixed scheduling
algorithm in [6] to schedule the remaining tasks, both heavy
and light DAGs that could not be transformed into HL-DAGs,
on the rest of the available processors in the system. Both
phases of the scheduling algorithm must result in a successful
schedule, otherwise, the task set as a whole is considered
infeasible.

A. Assigning Local Deadlines

The two-phase HL-FED scheduling algorithm proposed in
this work performs an offline first-fit task assignment, and a
deadline-based fixed priority partitioned scheduling algorithm
(DM-FF) to feasibly schedule HL-DAGs. However, since any
DAG task is assigned a single overall deadline (or period
since we assume real-time tasks with implicit deadlines in
this work), we must allocate sub-task level deadlines to suc-
cessfully realize deadline monotonic scheduling on individual
processors. We solve this problem by proposing a slack-based
local deadline (LD) assignment technique. First, we compute
and distribute slack during the schedule such that it ensures
that the independent light task can reclaim the under-utilized

Light DAGsHeavy DAGsHL-DAGs

Incompatible tasks

Task assignment
First-Fit (FF)

Partitioned
Deadline Monotonic

Scheduling

Low Tensity

Phase I Phase II

Heavy DAGs
+

Light DAGs

High Tensity

Global EDF
Scheduling

Light DAGs
Heavy DAGs

Federated
Scheduling

HL-FED Scheduling Framework

Frame-based
!"#$%&' !"#()# !"#$%&' !"#()#

11 22 33 440

Core #1

Core #2

A C X D G

B

Fork-phase Fork-phase

E F

0

Heavy DAG task/sub-task Light DAG

(a) (b)
0 4 4 11 11

11

Fig. 4. (a) An overview of our proposed scheduling algorithm (HL-FED).
Phase I schedules newly formed HL-DAGs, while phase II uses an existing
work [6] to feasibly schedule the rest of DAGs consisting of incompatible
HL-DAG candidates; (b) An example execution instant of the peak frame of
HL-DAG (Table II), along with sub-task level assigned local deadlines.

processing capacity within the heavy DAG execution context.
We can compute the worst-case response time R(τυhl) of all
the sub-tasks in each level υ ∈ Υ of the HL-DAG task τhl by
modifying Equation 5 as follows.

R(τυhl) = max

{
span(τυhl),

⌈
work(τυhl)− span(τυhl)

p− 1

⌉}
(9)

where work(τυhl) and span(τυhl) represents the length of the
longest complete path and the aggregate WCETs of all the
sub-tasks of the DAG task τυhl in level υ, respectively, and p
represents the number of processors assigned to this HL-DAG.
Finally, we assign a local deadline LD(υ) to each level υ ∈ Υ
such that,

LD(υ) = LD(υ − 1) +R(τυhl) (10)

Figure 4(b) shows an example multi-frame based scheduling
instant of the HL-DAG task whose real-time parameters are
given in Table II and its DAG task structure in illustrated in
Step II of Figure 2. The computed local deadlines within the
peak frame Cpeak of the HL-DAG is shown at the end of each
phase of execution, i.e., the fork phase and the alternating join
phase as part of the execution timeline. Similarly, the normal
frame Cnml, which is in fact the original heavy task, will
have the same assigned local deadlines since excluding the
light task does not change the overall response time analysis.

VI. SIMULATION

In this section, we evaluate the benefits of our proposed
approach by scheduling synthetic real-time DAG tasks on a
multicore system.

A. Setup

We validate our proposed scheduling approach (HL-FED)
and assess its real-time performance in a simulated environ-
ment on randomly generated task sets. We designed a task set
generator to create synthetic benchmark applications over a
range of utilization levels (100%, 150%, 200%, . . ., 1000%).
The period (Ti) and worst-case execution time (Ci) of each
task are randomly generated so long as the overall utilization
of the task set remains within the corresponding utilization
level. The worst-case execution time Ci of a DAG task τi
is upper bounded by

∑n
q=1 C(τq), where C(τq) denotes the

worst-case execution time of each sub-task within a given
DAG task τi. The value of n denotes the number of vertices
for each DAG task, and is chosen from a range (10, 15,
20,. . ., 100). The period Ti of each DAG task τi is computed
using Equation 4 such that the fraction span(τi)

ω(τi)
ranges from

(0-1) for each DAG τi. Once the number of vertices, and
their corresponding real-time parameters, are generated, we
design the DAG task structure by modifying an existing
user defined pseudo-random task graph generator framework
called Task Graphs For Free (TGFF) [16]. This allows us
to realize the HL-DAG transformation process. For a fixed
utilization, we generate 100 DAG task sets, with heavy DAGs
ranging between 30%-70% of the total number of tasks. Each
simulation run is carried out for one hyperperiod, which is the
least common multiple of the periods of all the tasks in a task
set.

B. Evaluation Metrics

We compared our approach against three most closely
related works; the first work is the most closely related DAG
scheduling framework that extends the federated scheduling
algorithm to schedule tasks based on their tensity values [6]
(henceforth denoted by UT). Moreover, since the authors in [6]
compare their work against (1) the classical federated schedul-
ing algorithm (denoted by FED) [4], and (2) a semi-federated
scheduling algorithm (henceforth referred to as SF) [5], it is
only fair for us to evaluate our proposed policy against them
as well.

Our objective is to evaluate the effectiveness of our proposed
framework HL-FED with respect to the system-wide usable
utilization. We also test the scalability of our approach by
comparing the processor allocation strategy by comparing the
required number of processing cores to ensure a feasible
schedule for each of the above mentioned scheduling algo-
rithms. Both of these evaluation parameters have been shown
to be good indicators of schedulability analysis and system
performance, and are highly sensitive to system DAG task
tensity values [6].

C. Results

We now assess the performance of our proposed scheduling
algorithm HL-FED. Figures 5-6 compare the simulation results
to highlight the benefits of HL-FED over existing algorithms
for scheduling DAG tasks. Figure 5(a) reports the simulation
results comparing the performance of HL-FED against UT, SF,
and FED in terms of the percentage of feasible task sets as a
function of utilization demands where the DAG task tensity is
set as low between 0.1-0.5. The number of heavy DAGs is set
at 30% of the total number of tasks in the task set. We compute
the number of cores saved by each scheduling algorithm
by comparing the total cores actually used for scheduling
against the worst-case theoretical processor requirement using
Equation 5. The trend shows that UT improves the usable
utilization 9% and 5% on average over SF and HL-FED,
respectively, across all utilization levels. It also shows an
improvement in the usable utilization value by 22% on average

	0

	15

	30

	45

	60

	75

	90

	105

	100 	150 	200 	250 	300 	350 	400 	450 	500 	550 	600 	650 	700 	750 	800

%
	F

ea
si

bl
e	

Ta
sk

	S
et

s

Utilization	(%)

(a)

HL-FED
UT
SF

FED
	0

	15

	30

	45

	60

	75

	90

	105

	100 	150 	200 	250 	300 	350 	400 	450 	500 	550 	600 	650 	700 	750 	800

%
	F

ea
si

bl
e	

Ta
sk

	S
et

s

Utilization	(%)

(b)

HL-FED
UT
SF

FED
	0

	15

	30

	45

	60

	75

	90

	105

	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9

%
	F

ea
si

bl
e	

Ta
sk

	S
et

s

Tensity

(c)

HL-FED
UT
SF

FED

Fig. 5. Simulation results showing (a) the percentage of feasible task sets as a function of utilization for DAGs with low tensity values and low heavy DAG
count in the task set, (b) the percentage of feasible task sets as a function of utilization for DAGs with high tensity values and high heavy DAG count in the
task set, and (c) the percentage of feasible task sets as a function of scaling DAG tensity values.

	0

	3

	6

	9

	12

	15

	18

	21

	100 	150 	200 	250 	300 	350 	400 	450 	500 	550 	600 	650 	700 	750 	800

%
	S

av
ed

	P
ro

ce
ss

in
g	

Co
re

s

Utilization	(%)

HL-FED
UT
SF

Fig. 6. Simulation results showing the percentage of saved processing cores
as a function of utilization for DAGs with high tensity values and high heavy
DAG count in the task set.

over FED across all utilization levels. HL-FED fails to improve
on the usable utilization because (1) the task set does not have
enough heavy DAG tasks to exploit the DAG transformation
technique, and (2) low tensity DAGs show better schedulability
results with G-EDF algorithm used in [6]. However, with high
tensity values (0.7-0.9), and 50% heavy DAG tasks in the
task set, Figure 5(b) shows that HL-DAG improves the usable
utilization by 18%, 15% and 11% on average over FED, SF
and UT across all utilization levels. This best-case scenario
effectively underlines the improvement of our approach over
existing schedules. Note that all algorithms policies fail to
feasibly schedule task sets once the task utilization demand
exceeds the 800% utilization mark.

Similarly, in the best-case scenario, Figure 5(c) reports
the simulation results comparing the performance of HL-FED
against FED, SF and UT in terms of percentage of feasible
DAG task sets as a function of its scaling DAG task tensity
values. The trend shows an improved usable utilization of
27%, 20% and 11% on average over FED, SF and UT,
respectively, across all utilization levels. Figure 6 reports the
simulation results comparing the scalability of our approach. It
compares the performance of HL-FED against FED, SF, and
UT in terms of percentage improvement in core allocation
policy as a function of task set utilization. We report an average
saving of up to 3%, 4% and 11% for SF, UT, and HL-FED
algorithms, respectively, over the baseline FED scheduling
algorithm across all utilization levels.

VII. CONCLUSION

In this work, we introduce a real-time DAG task model
called HL-DAG with support for the fork-join execution model

in a federated scheduling framework. We present a static
DAG task transformation technique, and an offline task as-
signment and scheduling framework (HL-FED) which provides
improved performance, while maintaining timing and logical
correctness over existing DAG scheduling algorithms for mul-
ticore systems.

REFERENCES

[1] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese, “A generalized parallel task model for recurrent real-time
processes,” in 2012 IEEE 33rd Real-Time Systems Symposium. IEEE,
2012, pp. 63–72.

[2] J. Li, K. Agrawal, C. Lu, and C. Gill, “Outstanding paper award:
Analysis of global edf for parallel tasks,” in 2013 25th Euromicro
Conference on Real-Time Systems. IEEE, 2013, pp. 3–13.

[3] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese, “Feasi-
bility analysis in the sporadic dag task model,” in 2013 25th Euromicro
conference on real-time systems. IEEE, 2013, pp. 225–233.

[4] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, “Analysis
of federated and global scheduling for parallel real-time tasks,” in 2014
26th Euromicro Conference on Real-Time Systems. IEEE, 2014, pp.
85–96.

[5] X. Jiang, N. Guan, X. Long, and W. Yi, “Semi-federated scheduling of
parallel real-time tasks on multiprocessors,” in 2017 IEEE Real-Time
Systems Symposium (RTSS). IEEE, 2017, pp. 80–91.

[6] X. Jiang, J. Sun, Y. Tang, and N. Guan, “Utilization-tensity bound for
real-time dag tasks under global edf scheduling,” IEEE Transactions on
Computers, vol. 69, no. 1, pp. 39–50, 2019.

[7] S. Baruah and T. Baker, “Schedulability analysis of global edf,” Real-
Time Systems, vol. 38, no. 3, pp. 223–235, 2008.

[8] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel real-
time tasks on multi-core processors,” in 2010 31st IEEE Real-Time
Systems Symposium. IEEE, 2010, pp. 259–268.

[9] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. Mc-
Donald, Parallel programming in OpenMP. Morgan kaufmann, 2001.

[10] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The Java virtual
machine specification. Pearson Education, 2014.

[11] M. Odersky, L. Spoon, and B. Venners, Programming in scala. Artima
Inc, 2008.

[12] R. P. Brent, “The parallel evaluation of arithmetic expressions in
logarithmic time,” Complexity of sequential and parallel numerical
algorithms, pp. 83–102, 1973.

[13] ——, “The parallel evaluation of general arithmetic expressions,” Jour-
nal of the ACM (JACM), vol. 21, no. 2, pp. 201–206, 1974.

[14] V. Lesi, I. Jovanov, and M. Pajic, “Security-aware scheduling of embed-
ded control tasks,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 16, no. 5s, p. 188, 2017.

[15] A. Mukherjee, T. Mishra, T. Chantem, N. Fisher, and R. Gerdes,
“Optimized trusted execution for hard real-time applications on cots
processors,” in Proceedings of the 27th International Conference on
Real-Time Networks and Systems, 2019, pp. 50–60.

[16] R. P. Dick, D. L. Rhodes, and W. Wolf, “Tgff: task graphs for free,” in
Proceedings of the Sixth International Workshop on Hardware/Software
Codesign.(CODES/CASHE’98). IEEE, 1998, pp. 97–101.

