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Abstract—Safe and efficient traffic control remains a challeng-
ing task with the continued increase in the number of vehicles,
especially in urban areas. This paper focuses on traffic control at
intersections, since urban roads with closely spaced intersections
are often prone to queue spillbacks, which disrupt traffic flows
across the entire network and increase congestion. While various
intelligent traffic control solutions exist for autonomous systems,
they are not applicable to or ineffective against human-operated
vehicles or mixed traffic. On the other hand, existing approaches
to manage intersections with human-operated vehicles cannot ad-
equately adjust to dynamic traffic conditions. This paper presents
a technology-agnostic adaptive real-time server based approach
to dynamically determine signal timings at an intersection based
on changing traffic conditions and queue lengths (i.e., wait times)
to minimize, if not eliminate, spillbacks without unnecessarily
increasing delays associated with intersection crossings. This
work is also the first to provide worst-case bounds on wait
time making our approach more dependable and predictable.
The proposed approach was validated in simulations and on a
realistic hardware testbed with robots mimicking human driving
behaviors. Compared to the pre-timed traffic control and an
adaptive scheduling based traffic control, our algorithm is able
to avoid spillbacks under highly dynamic traffic conditions and
improve the average crossing delay in most cases by 10–50%.

I. INTRODUCTION & CONTRIBUTIONS

As traffic continues to increase, congestion remains an
everyday challenge for commuters in urban areas who face an
average delay of 42 hours a year [1]. Congestion also negatively
impacts the U.S. economy due to wasted time ($305 billion in
2017 [2]) and fuel costs (19 gallons of fuel per commuter is
wasted solely due to idling in traffic per year [1]), as well as
the environment (28% of CO2 emissions in the U.S. come from
the transportation sector [3]). Development of additional roads
is not feasible due to shortage in land resources.

While it is important to manage traffic in general, congestion
at one intersection can (i) result in stop-and-go traffic and
potentially collisions [4], and (ii) cause queue spillbacks in
multiple lanes which can lead to a huge cog in the entire
network, resulting in unexpected delays and long recovery
time [5]. Thus, a traffic control system that manages the
intersection efficiently can have a significant impact on the
overall transportation network. Various adaptive traffic control
systems [6]–[8] employ different optimization techniques to
adjust the pre-timed signal policy to adapt to varying traffic pat-
terns. However, such methods are not easily tuned online, and
urban roads with closely spaced intersections do not necessarily
follow the modeled traffic scenarios. In addition, urban, closely
spaced intersections are often prone to queue spillbacks [9]. A

spillback occurs when there is a standing queue downstream
of an intersection that disrupts the discharge of vehicles even
when the light is green. Such congestion can obstruct the flow
of emergency vehicles through the traffic, potentially impacting
lives. Spillbacks can usually be observed when the separation
between densely packed intersections is small (<170 m [10])
and when the lights are locally managed without considering
the flow of traffic at upstream intersections. Hence, controlling
traffic flow in accordance to changing traffic conditions and
queue lengths is key to avoiding spillbacks, reducing conges-
tion, and improving the overall trip time of the vehicles. Due
to its adverse effects on the entire traffic network, considering
queue spillback is important while adapting to dynamic traffic
patterns, even if it results in slightly increased delays, as will
be shown in Section VI. While increased trip times may reduce
the drivers’ satisfaction, minimizing spillback has been shown
to lead to fewer collisions and disruptions [11].

For autonomous vehicles, traffic control can be optimized by
exploiting car-to-everything (C2X) connectivity, using virtual
traffic lights [12] and/or by enforcing a set arrival pattern
that avoids traffic deadlocks within an intersection [13]. These
approaches have been shown to be effective at alleviating
congestion and increasing fuel efficiency [14]. However, the
vehicles occupying our roadways today are still predominantly
conventional vehicles. Therefore, in the short term, an efficient
and effective traffic control infrastructure that exploits real-time
traffic data (e.g., time of day, temporary road blocks, and social
or unexpected events) and various sensing capabilities [15],
and which is applicable to both human-operated as well as
autonomous vehicles is crucial.

The goal of this work is to design a traffic control system at
a given intersection that is able to quickly adapt to changing
traffic patterns without relying on complex traffic models,
while accommodating both conventional vehicles and future
intelligent transportation systems. Our objectives are to (i)
minimize, if not altogether eliminate, spillbacks in order to
improve travel times without inducing long wait times, and (ii)
bound the delay associated with intersection crossings so that
travel times can be accurately determined, which can help in
precisely selecting the fastest routes and in trip planning. Our
main contributions are:

1) We formulate the traffic control problem at an intersection
as a real-time task scheduling problem and develop a server-
based approach to adapt to changing traffic flows and queues,
leveraging the traffic information at this and neighboring in-



tersections. Our approach aims to minimize queue spillbacks,
and ensures that vehicles can cross intersections in a timely
manner without collisions.

2) We provide a bound on the worst case wait time experienced
by the vehicles at an intersection by exploiting the real-time
properties of our proposed model.

3) We analyze different traffic arrival patterns and gauge the
adaptability of our algorithm in simulations. Data show
that our approach avoids spillbacks even under extremely
unbalanced traffic flows while reducing the average crossing
delay by 10% to 50% in most cases.

4) We validate our approach and assess its performance on
a hardware testbed with robots representing vehicles and
emulating realistic human driving response in a typical urban
traffic environment.

II. RELATED WORK

Recent work on intersection management has primarily fo-
cused on managing traffic flow for autonomous vehicles [16] or
by assuming the vehicles are connected [17]. Reservation-based
schemes were introduced where autonomous vehicles benefit
from their communication features and make reservations in
the intersection, while the human-driven vehicles follow the
standard traffic light [18]. A message request based connected
vehicle traffic management is also presented [19], where the
effect of communication delays in traffic control is studied.
Since it will be 25–30 years before all vehicles will have
connected vehicle technology [20], approaches that do not
favor only the connected vehicles are needed. Our approach
works for traditional, mixed, and fully-automated traffic.

Gathering traffic information to optimize and improve sig-
nalization at an intersection has also been a key research area.
Traffic pattern analysis can be conducted using wireless sensor
networks [21] and queue estimation analysis [22], and then
used to optimize signal timings. Existing solutions in this
area are either fixed timing-based traffic systems, detector-
based reactive traffic control systems, or adaptive traffic con-
trollers [23]. Fixed timing controllers use offline databases to
adjust signal timings according to the hourly usage pattern
generally observed. Sensor based traffic detection, i.e., loop de-
tectors and cameras, are often used for real-time traffic control.
However, such actuation based controls are not very adaptive
in heavy traffic leading to resource starvation [24]. In addition,
the sensors require calibrations and may malfunction [20], [25].

Adaptive traffic controllers used for conventional traffic [6],
[7] rely on mathematical models and optimization techniques.
These control techniques provide centralized control over the
entire urban network, which can achieve optimal traffic control
but is not scalable in practice [25]. Field evaluations for such
techniques also show that slightly inaccurate traffic data can re-
sult in significant performance drop in traffic management [26].

Similarly, prediction and learning based techniques using
reinforcement learning and deep learning [27] can be used to
optimize traffic at an intersection, but require high computa-
tional capabilities, along with large amount of data containing
different traffic patterns and dynamics. Such computational and

Fig. 1: Two possible phase sequences (A) and (B).

data intensive algorithms require costly infrastructure, which is
not readily available. In a closely related work, an adaptive traf-
fic control technique that maximizes the green times for real-
time traffic signalization was presented [28]. While the authors
proposed a local intersection control approach by introducing a
weight factor to the phases as per the incoming traffic flow, they
did not consider queue spillbacks, which can cause disruptive
effects, especially in urban networks [29], as will be shown
in Sections VI and VII. We focus on minimizing spillbacks
since they have been shown to have propagating effects on the
network [30], [31]. In addition, existing works [16], [18], [27],
[28] are best-effort approaches and do not provide worst-case
delay guarantees.

III. SYSTEM MODEL AND ASSUMPTIONS

A. Road, Infrastructure, and Vehicle Models

We consider an intersection with incoming traffic from four
different directions and which is a typical crossroad where the
incoming traffic enters the intersection to either go straight
or take a left turn1. It is also assumed that vehicles in the
system avoid performing lane changes. Hence, there are eight
different traffic flow patterns inside the intersection, as shown
in Figures 1 and 2. It is important to notice that every entering
traffic flow has a non-conflicting traffic flow which neither
disrupts nor hampers the former’s ongoing flow. For instance,
for vehicles going straight from lane L1, vehicles from lane
L5 or lane L2 are non-conflicting and do not interfere with
lane L1’s flow. Thus, if lane L1 is allowed access to the
intersection, either lane L2 or lane L5 can simultaneously
access the intersection as well. Considering this, Figure 1
shows that there can be two different usage patterns known
as phase sequences of the intersection that indicate which
two non-conflicting lanes can access the intersection and that
the eight incoming lanes can be combined into four different
phases that need exclusive access to the intersection.

We assume that our system is managed by an intersection
manager (IM), which aggregates information about the incom-
ing traffic patterns from sensors and/or upstream intersections
and forecast data, if any. The IM then calculates the required
signal timing. In our approach, we only require (some) traffic
information to be known and do not depend on how such data

1Right turning vehicles are not considered for simplicity, as they do not
necessarily enter into the intersection and usually have a special channelized
turning lane dedicated for a free right turn. However, right turning vehicles can
be considered in our approach by considering them as independent incoming
lanes into the system.



may be acquired. This, however, implies that the intersection
manager has minimal cloud connectivity.

B. Traffic Model

All the traffic indicators are assigned the green-yellow-red
light timings. One cycle is said to have completed, when all
the traffic indicators of the intersection have completed one
rotation of lights. The time taken to complete an entire cycle
is called the cycle time (Tc), after which the signals repeat the
pattern. Typically, the cycle time is divided into smaller chunks
of signal times which are distributed among the vehicular as
well as pedestrian traffic that need to use the intersection. Each
chunk of signal times would allow the incoming traffic from
a particular phase sequence to cross the intersection. In our
model, though we focus on the incoming vehicular traffic,
pedestrian traffic can trivially be incorporated.

We use lane capacity as a measure to detect a spillback. The
lane capacity is defined as the maximum number of vehicles
that a lane can handle on average. Since urban traffic usually
consists of passenger vehicles, if the length li of a lane Li,
the average length vi of a passenger vehicle, and the average
safe spacing distance si between two consecutive vehicles are
known, then the lane capacity zi can be estimated as

zi =
li

vi + si
. (1)

The capacity of a lane is a constant and can be found prior
to deployment by surveying vehicle types accessing the urban
areas or from real-time classification approaches [32].

An incoming lane Li is characterized by a tuple
{ai,j , qi,j , zi}, where ai,j is the incoming vehicle flow rate
during the jth cycle, qi,j is the number of vehicles queued
in the lane at the beginning of the jth cycle, and zi is the
lane capacity, which does not change over time. For a given
flow rate, the amount of time a lane needs access to the
intersection to avoid spillbacks can be calculated if we know
the number of vehicles that must be dispatched during Tc
before the lane reaches its capacity. For example, for a closely
spaced intersection with the incoming lane length of 120 m,
an average vehicle length of 5 m, and a spacing of 1 m, the
lane capacity is 20 veh. With an incoming traffic flow rate of
5 veh/min, queue in this lane will spillback in 20/5 = 4 min if
no vehicle from this lane crosses the intersection. Therefore,
to avoid a spillback, this lane must receive a green light within
4 min. This spillback time tsbi,j is defined as follows.

Property 1 (Spillback Condition). For a lane Li during the jth

traffic cycle, assuming that ai,j(t) is the flow rate of vehicles
that varies with time t, qi,j is the existing queue length, i.e.,
number of vehicles already in Li, at the start of the jth cycle,
and zi is the capacity calculated using (1), then, the spillback
time tsbi,j is

tsbi,j =
zi − qi,j
ai,j(t)

. (2)

Proof: Based on the definitions, ai,j(t)·tsbi,j vehicles will
enter lane Li during the time interval of length tsbi,j . Hence,
the total number of vehicles in Li during tsbi,j is

ni,j = ai,j(t) · tsbi,j + qi,j .

If none of the vehicles is dispatched during tsbi,j , then a
spillback will occur after ni,j equals the capacity, i.e., ai,j(t) ·
tsbi,j + qi,j = zi and the property holds.

We assume that the flow rate ai,j(t) varies with time, but
is fixed within a given cycle Tc. Hence, we refer to ai,j(t) as
ai,j for the rest of the paper. For rapidly changing flows, the
worst case flow rate within Tc can be bounded and used in the
analysis instead.

To determine the number of vehicles that can be dispatched
in a given green time interval, we make use of saturation
headway [33]. When the traffic light for a lane turns from
red to green, the leading vehicle takes a longer time (h1) to
react to the change in traffic lights. This headway difference
slowly reduces to e1, e2 . . . em as the queue moves forward
where e1 ≥ e2 ≥ . . . ≥ em since following vehicles react
comparatively faster. After m vehicles, the time headway sta-
bilizes to a value h and em+1 . . . en = 0 (usually after the 6th

vehicle [34]). Hence, in one cycle of green-yellow-red, there
is start-up lost time denoted by ts when none of the vehicles
utilize the intersection due to the delayed reaction of the
leading vehicles in the queue and ts = h1 +

∑m
k=1 ek. Along

with ts, there exists clearance lost time, tcl that represents the
time between the signal phases during which an intersection
is not assigned to any of the lanes. During tcl, the vehicles
that have entered the intersection just before the light turned
red are allowed to clear the intersection. The total lost time tl
comprises of both tcl and ts; tl = ts + tcl. Accordingly,

Ti,j = h× ni,j + tl. (3)

In other words, Ti,j shows the amount of time required to
discharge ni,j vehicles from a lane during the jth traffic
cycle when the saturation headway h and the lost time tl are
considered. The constants h and tl are defined in Highway
Capacity Manual (HCM) as 4 s and 2 s, respectively [35].

IV. PROBLEM STATEMENT

Let us assume an intersection with incoming traffic from four
different directions, with a total of eight lanes, where access to
the intersection is dictated by a traffic light for each direction of
flow and according to the phase sequences. Further, each lane
is characterized by a capacity, an instantaneous flow rate, and
a queue length as described earlier. The goal is to determine
the cycle time Tc and the signal timing assignment within Tc
for the different phase sequences to minimize spillbacks.

V. A REAL-TIME TASK SCHEDULING PROBLEM

The problem of traffic control at an intersection (Section IV)
can be transformed into a real-time task scheduling problem
while ensuring that there is no conflict in accessing the in-
tersection and the traffic remains under the capacity without
causing spillbacks. We will also leverage a real-time based



Fig. 2: An intersection as a real-time task scheduling problem.

analysis to provide bounds on the delays incurred in the traffic
associated with intersection crossings. Such worst case delay
analysis can be useful in providing predictable wait-times for
the vehicles, make searching for faster routes more reliable and
leads to a more accurate trip time estimation.

We model an intersection shown in Figure 2 as follows:
• Vehicles waiting to cross an intersection–aperiodic tasks that

needs to be executed.
• Incoming lanes in each phase sequence–aperiodic task

queues.
• Intersection–resource, e.g., processor, that is shared among

all the incoming lanes with conflicting flows.
• Traffic lights for each direction of flow–sporadic server re-

sponsible for executing the aperiodic tasks, i.e., the incoming
vehicles.

• Intersection manager (IM)–a sporadic task that gathers the
incoming traffic data to calculate the cycle time Tc as well as
the signal timing within Tc. The IM ensures that the servers
are non-preemptive.

As explained in Section III, an intersection can be divided
into four phases, each of which consists of two lanes with
non-conflicting flows. These four phases need to be effectively
scheduled to utilize the intersection while ensuring no colli-
sions occur by disallowing vehicles from multiple phases to
enter the intersection at the same time. We thus consider a
lane in each phase as an aperiodic task queue. Vehicles entering
into the lanes are represented as aperiodic soft real-time tasks
having a known execution time (Ci), i.e., time to cross the
intersection, and an arrival time (ri), defined as τi(ri, Ci). The
execution time, Ci is a function of the traveling speed of the
vehicles, which is relative to the traffic flow rate and vehicle’s
position in the queue [36]. As shown in Figure 2, vehicle
τ1(1, 6) arrives at time 1, and has an execution time of 6. The
tasks are considered soft real-time as they do not necessarily
have a deadline before which they need to be scheduled, i.e.,
enter and exit the intersection. However, to reduce wait times
and improve traffic flow, the vehicles should be allowed to
cross the intersection as soon as possible. An intersection is
thus, a shared resource. In all, we have eight task queues
corresponding to eight lanes that combine to form four phases
which hold the incoming aperiodic tasks.

Fig. 3: Example sporadic server serving aperiodic tasks.

A. Sporadic Servers to Execute Aperiodic Tasks

As discussed earlier, vehicles in a given lane that need to
access the intersection are modeled as aperiodic tasks in a
task queue (associated with that lane) until they are ready
to be executed on the processor, i.e., until the vehicles are
permitted to enter an intersection. To serve these aperiodic
tasks, we leverage the concept of sporadic servers [37]. In an
environment with mixed real-time tasks, servers are often used
to schedule aperiodic requests such that their response times
are minimized while ensuring that the hard real-time tasks
meet their deadlines. [38]. In our setting, a sporadic server is
responsible for executing the queued aperiodic requests. Such
a server executes until all aperiodic requests have been served
or it has exhausted its execution budget during that period,
whichever comes first. Hence, a sporadic server job SS is
represented by its budget BS and an arrival time aS . We do
not distinguish between a sporadic server and a sporadic server
instance when the context is clear. That said, a sporadic server
is characterized by a minimum inter-arrival time TS as well
as a budget BS . Since there are eight lanes, and hence, eight
aperiodic task queues, we have eight sporadic servers, each
of which is paired with another (corresponding to its non-
conflicting lane in a given phase) and is served along with its
pair. Note that our system can be trivially extended to situations
where more than two lanes have non-conflicting flows, e.g.,
two lanes for left turns and one lane for going straight. In such
cases, all the servers serving the non-conflicting lanes can be
grouped to access the intersection at once. We will present an
approach to assign the budget and the arrival time of these
servers in Section V-C.

Figure 3 shows the operation of a typical sporadic server
serving aperiodic tasks. Aperiodic tasks (vehicles) arrive and
join the aperiodic queue (lane). The sporadic server (green
light) is invoked according to its arrival time and execute the
aperiodic task(s) at the head of the queue. The duration for
which the server serves aperiodic requests (green light) is equal
to the server’s budget unless the aperiodic queue is empty, in
which case the server suspends itself (red light). A sporadic
server will be activated again, and its budget replenished, no
sooner than after the set minimum inter-arrival time has been
reached, i.e., if an incoming lane is empty, the sporadic server is
not activated again until a vehicle arrives. In Figure 3, aperiodic
tasks τ1, τ2 and τ3 are released at time 0, 5, and 10, with
execution times of 2, 3, and 1, respectively. As these tasks



TABLE I: Green time calculations using server based approach
with cycle time of 90 sec

Phase Lane Cap
(veh)

Queue
(veh)

Flow Rate
(veh/min)

Spillback
time (s)

Budget
(%)

Green
Time (s)

1 10 4 3 1201 5 13 2 2 300 24.5 0-20

2 13 3 1 6002 6 12 3 4 135 23.39 21-40

3 14 5 6 903 7 15 3 4 135 26.71 41-66

4 15 5 2 3004 8 13 4 5 108 25.38 67-89

arrive, they join the aperiodic task queue. When the server
SS(6, 8), with a minimum inter-arrival time of 8 and budget
of 6 is invoked at time 8, τ1, τ2, and τ3, whose combined
execution times are 6 (equal to the server’s budget) are executed
and the server suspends itself at time 14. The server is activated
again at time 16 since its minimum inter-arrival time is 8.

B. Intersection Manager

Unlike a quintessential sporadic server that replenishes its
capacity and sets its next activation time in accordance to its
consumption, the budget replenishment rules for the sporadic
servers used in our work are governed by a monitoring task,
i.e. the intersection manager (IM), which is also responsible for
guaranteeing that the collective server budget is no greater than
the maximum budget, i.e., that the “system” is not overloaded.
In addition, the IM assigns budgets in such a way that no pre-
emptions can occur to ensure safety, since it is not possible to
“preempt” a vehicle after it has entered an intersection. The IM
is a lightweight sporadic task, with an execution time CIM and
an arrival time aIM . The arrival time of the IM task coincides
with the traffic cycle time (Tc), i.e. IM task is activated at the
end of each traffic cycle. Once activated, the IM aggregates
traffic information for the incoming lanes and calculates the
budget and the arrival time of each sporadic server based on
the spillback concept discussed in Section III-B. It also sets its
own next arrival time, depending on the cycle length obtained
from the calculated budget (Section V-C). Note that the budgets
and the arrival times are expected to change over time due to
time of day, traffic pattern etc., and calculated in such a way
that all sporadic servers and the IM task itself are schedulable.

The minimum inter-arrival times for all sporadic tasks in
the system, i.e., the sporadic servers and the IM task are set
to tmin = h1 + tcl. This is the minimum time required for the
lead vehicle in a queue to cross an intersection as it will take
h1 time due to the reaction delay to the green light and take tcl
time to clear the intersection (as explained in Section III.) The
time complexity of our signal timing calculation algorithm that
the IM task performs is O(n). Since IM is a lightweight real-
time task, it can easily be deployed using currently available
traffic controllers that are capable of running a minimal real-
time OS [39].

C. Parameter Assignment for Sporadic Servers

Our goal is to assign the cycle time, as well as the budget
and the arrival time of a given sporadic server instance within

each cycle such that spillbacks are minimized. To calculate
the cycle time Tc, we use a concept that is similar to critical
lane analysis [40]. That is, we determine the smallest spillback
time among all lanes according to Equation (2). The idea is
that, in this way, none of the lanes experiences a spillback
before they receive their green time in a given cycle. This
least spillback time is used as the cycle length Tc for the
next traffic cycle. Since the cycle length is distributed among
all incoming lanes, some vehicles will be dispatched from
every lane and hence none of the queues will spillback within
this traffic cycle. Consider an example in Table I where lanes
(L1, L5), (L2, L6), (L3, L7) and (L4, L8) form the four phases
with non-conflicting flows. Table I shows the spillback time for
each queue. The capacity, existing queue length, and flow rate
of each lane are also listed. In this case, the critical lane is L3

and the cycle time is set to the smallest spillback time, i.e.,
Tc = 90.

To calculate the arrival time of the eight sporadic servers,
we make the following observation. Since the time when these
servers execute coincides with a green time for a given lane,
we set the arrival time to be the beginning of the next cycle and
enforce isolation, i.e., only lanes in a given phase receive green
light at a time, by assigning a fixed priority to each server in
an arbitrary but consistent manner. In our work, we assume
that πSSi

≥ πSSj
, i < j, where πSSi

denotes the priority of
server SSi

. For servers whose lanes belong in the same phase,
their priorities are the same and their corresponding servers
can execute at the same time with the same budget.

From Table I, the cycle time of 90 will be distributed
among the four phases. Thus, all eight lanes will dispatch some
number of vehicles during this time period, thereby avoiding
spillbacks not only in the third lane but in all other lanes as
well. After the cycle time has elapsed, the IM task will be
activated again to calculate the new value for Tc and the budget
for the servers. We now discuss how to assign the budgets.

1) Calculating Minimum and Maximum Budgets: Let us
define the utilization of a sporadic server SSi as Ui =

BSi

Tc
.

Depending on the flow rate, queue, capacity, and arrival time,
every server SSi

will have a minimum utilization demand,
Ui,jmin , to avoid spillback within jth cycle, given by

Ui,jmin =
h× (ai,j · Tc + qi,j − zi + 1) + tl

Tc
. (4)

As explained later in Lemma 1, h×(ai,j ·Tc+qi,j−zi+1)+tl
indicates the minimum number of vehicles that need to be
dispatched from lane Li. Similarly, the maximum utilization
demand Ui,jmax of each server (phase) can also be calculated.
The maximum utilization demand is defined as the amount
of utilization that a lane requires to dispatch every vehicle
currently in the queue as well as every vehicle expected to
arrive during Tc. Therefore,

Ui,jmax
=
h× (ai,j · Tc + qi,j) + tl

Tc
. (5)

To avoid spillbacks in any phases, the assigned utilization
should be between Ui,jmin

and Ui,jmax
. The closer it is to



Ui,jmax
for each phase, the more we are dispatching than the

minimum required to avoid spillback and hence the system
performs better with shorter queue buildup for the next cycle.
To start, each server is initialized with its respective minimum
utilization, which is recalculated with updated traffic infor-
mation at the beginning of each cycle. We next discuss how
to distribute the leftover budget (green time) if the combined
minimum utilization for the four phases is less than the length
of Tc. Note that if such combined minimum utilization is
greater than Tc, spillbacks cannot be avoided.

2) Distributing Leftover Budgets: Once the minimum bud-
get demands of all the incoming lanes have been satisfied, we
aim to maximize the assigned budget for each lane. We adopt a
simple heuristic where the leftover budget is divided among the
phases inversely proportional to the spillback time; less budget
is allocated to the lane with a higher spillback time.

D. Correctness and Worst Case Delay Analysis

Once Tc is calculated (Section V-C), the server budgets
are distributed such that the total assigned budget does not
exceed 100% of the available bandwidth (Tc). Hence, the total
green times assigned to the servers will never exceed Tc,
thereby preventing the occurrence of conflicting green lights.
In addition, since the servers execute in a fixed-priority, round
robin fashion, and server budgets are calculated in such a
way that preemption cannot occur, no two or more lanes with
conflicting traffic flow (servers) will have green lights at the
same time, as the lower priority servers will not get to run as
long as a higher priority server is being executed and has not
exhausted its budget. As the system is not overloaded (total
utilization ≤ 100%), all incoming lanes will be able to access
the intersection, enough to satisfy the minimum execution
demand for all lanes, thereby avoiding spillback if possible.

Now, we analyze the worst-case intersection crossing delay
that a vehicle may be subjected to under our approach.

Lemma 1. For a lane Li during the jth cycle, assuming that
ai,j is the flow rate of vehicles, qi,j is the existing queue length,
i.e., number of vehicles already in Li, at the start of the jth

cycle, and zi is the capacity. Let nouti,j be the number of
vehicles that are dispatched from Li in a cycle of length Tc.
Then, a spillback is avoided if

nouti,j ≥ ai,j · Tc + qi,j − zi + 1. (6)

Proof: If ai,j is the flow rate of vehicles in Lane Li, zi
and qi,j are the lane capacity and the existing queue length
during the jth cycle, then in Tc time, ai,j · Tc vehicles will
enter the lane Li. If nouti,j vehicles are dispatched in Tc time,
then total number of vehicles in lane Li in the jth cycle will
be ai,j ·Tc−nouti,j +qi,j . To avoid spillback, the total number
of vehicles have to be less than the capacity zi. Therefore,

ai,j · Tc − nouti,j + qi,j < zi

⇒ nouti,j > ai,j · Tc + qi,j − zi
⇒ nouti,j ≥ ai,j · Tc + qi,j − zi + 1.

The integer 1 is added, as the number of vehicles must be an
integer.

Theorem 1. Assuming that the flow rate is equal to ai,j , i =
1, . . . , n and ∀j′ > j, the wait time Wk,i,j for a vehicle at the
kth position in lane Li at the jth cycle is bounded by

Wk,i,j ∈

0,
⌊

k
nouti,j

⌋∑
j=1

(Tc − Ui,jmin
· Tc))

 . (7)

where nouti,j denotes the minimum number of vehicles dis-
patched from Li in jth cycle, and all other variables are as
defined previously.

Proof: A vehicle entering lane Li will have the longest
wait time when it joins the queue exactly when the light turns
from green to red. Since our underlying approach follows a
round robin policy, lane Li will get to access the intersection
after all the other three phases have consumed their allotted
budget. As discussed earlier, during the period Tc in the
jth cycle, the entire budget is distributed among the four
phases only. Hence this vehicle will have to wait for at most
Tc − Umini,j

· Tc time, before its lane is able to utilize the
intersection again. Umini,j

can be calculated by finding the
minimum number of vehicles, nouti,j , to be dispatched in Tc
duration from lane Li as in (6). Hence, the time required to
dispatch nouti vehicles is: Cmini,j

= h × nouti,j + tl from
Equation (3), and

Umini,j
=
h× (ai,jTc + qi,j − zi + 1) + tl

Tc
. (8)

The worst case wait time will occur when the lane un-
der consideration Li receives minimum utilization assignment
Umini,j

. Since, only nouti,j number of vehicles in front of the
kth vehicle will be able to enter the intersection. Thus, the total
worst case wait time for the vehicle at the kth position in lane
Li at the jth cycle is

W =

⌊
k

nouti,j

⌋∑
j=1

(Tc − Ui,jmin
· Tc).

Clearly, the best case wait time for a vehicle is zero, which
will occur when the vehicle arrives at the intersection when the
light is already green and there is no queue in front of it. The
vehicle then proceeds to cross the intersection immediately.
The wait time Wk,i,j for a vehicle at the kth position in lane
Li at the jth cycle is hence bounded by

Wk,i,j ∈

0,
⌊

k
nouti,j

⌋∑
j=1

(Tc − Ui,jmin
· Tc))

 .



While the above worst-case delay analysis is based on the
average length of the vehicles, a more accurate delay value
can be obtained using information acquired on-the-fly from
road-side detectors [32] (at the expense of an increase in time
complexity associated with delay analysis), or the maximum
vehicle length can be used instead of the average length for a
more pessimistic but conservative estimate.

VI. SIMULATIONS

We compare our approach against (i) a widely deployed
pre-timed traffic control technique [41], and (ii) an adaptive
control technique based on real-time phase saturability [28].
The pre-timed control uses the commonly recommended cycle
lengths of 60, 90, and 120 s. In addition, we assumed a more
intelligent pre-timed technique where the green times within
a cycle are adjusted according to the incoming flow from
different phases by ensuring that the lanes with higher flow rate
get a longer green time. More sophisticated techniques [6], [7],
[27] consider network-wide optimization, which suffer from
scalability issues as discussed earlier in Section II.

A. Simulation Setup

We used a tick-based simulator, written in Python, to simu-
late the desired vehicle flow (i.e., where the vehicles follow
the arrival/departure patterns and safe distances as per the
traffic control algorithms and the restrictions defined by the
HCM [35]). A detailed description of both our simulation and
hardware setups is available online [42]. In these simulations,
three different types of incoming traffic flow patterns with
varying traffic flow rates were considered to validate the
adaptability of our approach to varying flow patterns.

• Best case flow: all the vehicles arrive and join the queue
right at the beginning of the green time

• Average case flow: all the vehicles have uniform arrival times
• Worst case flow: all the vehicles that are expected to arrive

join the queue right at the end of the green time

To permit a comprehensive comparison of varying traffic
flow through different incoming lanes of the intersection, we
simulate vehicle flow rates varying from 1–7 veh/min (60–
420 veh/hr). These flow rates illustrate different realistic critical
volume-to-capacity ratios for a signalized intersection, as pro-
vided by the Federal Highway Administration [43]. We have,

• Flow rate of 1–4 veh/min (60–240 veh/hr) – an intersection
running under capacity with reduced delays

• Flow rate of 4–6 veh/min (241–360 veh/hr) – an intersection
running near capacity where delays and queue buildups are
expected

• Flow rate up to 7 veh/min (420 veh/hr) – an intersection with
unstable flows and wide range of delays

Vehicle flow rate of 8 veh/min or more entirely disrupts the
intersection as the demand exceeds the capacity. Hence, our
simulation results compare vehicle flows up to 7 veh/min.

TABLE II: Average delay in seconds experienced by vehicles
using server based approach vs. pre-timed adaptive approach
with cycle lengths of 60, 90 and 120 s

Flow Rate (veh/min)
Type 1 2 3 4 5 6 7
Avg 61.19 63.86 53.66 43.86 40.11 36.79 67.09
Best 2.94 1.6688 1.411 1.307 1.255 1.19 1.15Server

Based Worst 45.82 46.13 31.29 23.83 19.35 16.35 46.17
Avg 23.69 32.125 32.74 34.88 41.09 580.55 334.06
Best 2.98 3.92 2.78 2.7 15.02 234.3 28.660
Worst 67.67 45.9 34.84 23.72 20.52 600.52 32.58
Avg 37.63 38.44 34.34 35.46 46.46 44.73 141.76
Best 36 1.87 1.58 1.36 1.31 1.24 1.29990
Worst 67.67 45.9 34.84 23.72 20.52 16.29 15.559
Avg 61.19 63.85 54.4 55.32 60.06 64.54 67.09
Best 2.94 1.6688 1.411 1.307 1.255 1.215 12.6120
Worst 45.82 46.13 31.29 23.83 19.35 16.35 15.35

B. Comparison with Pre-Timed Traffic Control Technique

Table II shows the the average delay experienced by the
vehicles when the capacity of the lane is 10 veh and the
incoming flow varies from 1–7 veh/min (60–420 veh/hr across
all lanes). Since there are 8 incoming directions, 8–56 veh
aim to cross the intersection per minute, i.e., flow of up to
3,360 veh/hr through the intersection from different directions.
A constant flow of 56 veh/min can saturate the intersections
when lane capacities are low, causing the queues to spillback,
as is observed in both approaches when the flows from all
directions exceed 7 veh/min. The highlighted cell entries in
Table II indicate that queue spillbacks were observed.

For lighter flow rates (less than 5 veh/min), our approach
does not reduce delays associated with intersection crossings,
as we aim to avoid spillbacks because of which more vehicles
are accumulated leading to larger queues, cycle times, and
green times. However, for heavier flow rates (5–7 veh/min), the
pre-timed adaptive approaches lead to spillbacks (marked in
red in Table II). In contrast, our approach does not experience
spillback and in fact reduces the average delays, except for
the average case with flow rate of 7 veh/min. Even then, our
approach does not perform worse than the existing approaches.

Figures 4 and 5(a) show the average delay experienced by the
vehicles when the incoming flows from different directions are
unbalanced. For this case, we considered low traffic volumes
(1–3 veh/min) in two phases and medium to heavy traffic
volumes (6–8 veh/min) in the other two phases, to simulate
minor and major arterials. By varying lane capacity, it can
be seen in Figure 4 that our approach experiences spillbacks
only when the net capacity is very small (7 veh) and the
incoming flow rate is high (8 veh/min), i.e., when a spillback
cannot be avoided. For capacity of 8–14 veh, all pre-timed
adaptive approaches experience heavy spillbacks in at least one
of the three types of flow patterns. As the capacity increases,
spillbacks become less of an issue, as expected. Figures 5(a)
and (b) show the delays experienced by the vehicles with
dashed line indicating queue spillbacks occurring in the case
of average vehicle flow. It should also be noted that in most
cases, the worst case flow results in lower delays compared
to the average case flow, as long as the number of incoming
vehicles is under the lane capacity. This is due to the fact that
the worst case flow during a cycle (where not all vehicles can
cross and thus must wait until the next cycle) becomes the best
case flow for the next cycle (where the vehicles are waiting and



Fig. 4: Number of vehicles experiencing spillback under vary-
ing lane capacity with unbalanced flow rates.

ready to cross the intersection when the light turns green.
In addition, as seen in Figure 5(a), our approach ensures that

the average delays remain reasonable and are comparable to the
delays when using the pre-timed adaptive approach with 90 and
120 s cycle lengths. It is also clear that the cycle length of 60 s
is not able to handle the load imbalance with incoming traffic
of 8 veh/min and hence shows large delays due to spillbacks.
Our simulations show that our server based approach ensures
that a spillback is avoided in cases when it is possible to do
so, while also showing 10–50% improvement in average delays
experienced by the vehicles in most cases.

(a) Constant unbalanced vehicle flow. (b) Frequently changing unbalanced
vehicle flow.

Fig. 5: Average delays incurred by vehicles with server based
approach vs. pre-timed adaptive control.

Finally, to test the adaptability of our approach to fluctuating
traffic, we ran the simulations for 100 traffic cycles with an
average case traffic flow of 4 veh/min and a sudden increase of
traffic to 8 veh/min between every 5–50 cycles. Figure 5(b)
shows that the average delay experienced by the vehicles
in the case of traffic controllers with 120s and 90s cycle
length is constant, since the green intervals are long enough
to dispatch all vehicles from the queue. However, spillbacks
were observed since more vehicles are accumulated during the
red time, thereby exceeding the lane capacity. While spillbacks
were not observed when the cycle length is 60 s, long average
delays of 67.72 s were observed, especially when the flow rate
frequently changes. When using our approach, no spillbacks
were observed and the average delay is below 40 s, except with
very frequent traffic surges (every 5 and 10 cycles).

C. Comparison with Adaptive Elastic Traffic Signal Control

Han et al. [28] provided an adaptive technique using elastic
scheduling to fine-tune the timing parameters of a signalized
intersection. The authors implement their approach on three
different types of flows, i.e. light, medium and heavy. Their
scheduling technique is called “elastic” since they provide a
range of allowable green times and select an optimum green
time for different phases depending on the variations in the
traffic pattern. They also calculate an optimum cycle length
for a traffic signal, for a given number of vehicles entering the
system per lane (for three different flow types).

As shown in Table III, we compare our proposed server
based approach with the adaptive technique by calculating the
average delay incurred by the vehicles in the system under
medium and heavy vehicle flow types. Based on our results,
queue spillbacks occur when the optimal green times and
cycle times provided in [28] are used under varying capacities.
The results from the light traffic flow type are not shown as
with such low traffic flow rate, the both approaches perform
similarly and queue spillbacks do not occur, which was also
observed in case of pre-timed control (Table II). The entries
in Table III highlighted in red indicate that queue spillbacks
were observed in that scenario. Table III shows that in case
of the adaptive approach, queue spillbacks are observed with
capacities less than 14 veh for medium traffic flow and 29 veh
for heavy traffic in all three flow patterns, i.e. best, worst and
average. While in case of our server based approach, spillbacks
are avoided except when the lane capacity is too small to
accommodate the heavy incoming traffic (capacity of 20 veh
just falls short of accommodating an incoming traffic of 24-
28 veh per traffic cycle). Even though in this case all three
approaches fail at avoiding spillbacks, the queues experience
spillback within 47 s and 68 s under the pre-timed control and
the elastic adaptive control techniques respectively, while the
server based approach was able to delay the spillback to 173 s.

(a) Medium flow (b) Heavy flow

Fig. 6: Average delays incurred by vehicles with server based
approach vs. pre-timed adaptive control.

Finally, Figure 6 shows the variable cycle lengths in the
server based approach vs. fixed cycle length of adaptive ap-
proach, under medium and heavy flow type and average vehicle
arrival pattern. In our proposed approach, the cycle length is
recalculated according to the incoming traffic as well as the



TABLE III: Average delay(s) experienced by vehicles using server based vs. adaptive elastic scheduling based approaches [28]
Flow

Property
Lane Capacities (veh)

8 9 10 11 12 13 14
Type Pattern Server Adaptive Server Adaptive Server Adaptive Server Adaptive Server Adaptive Server Adaptive Server Adaptive

Medium
Flow

Best 12.0 8.0 3.4 8.0 3.89 8.0 3.89 8.0 4.3 8.0 4.33 8.0 4.84 8.0
Avg 23.6 28.7 26.3 28.7 32.3 28.7 35.1 28.7 28.6 28.7 30.0 28.7 30.3 28.7
Worst 35.9 50.5 39.5 50.5 43.5 50.5 47.5 50.5 51.5 50.5 55.5 50.5 49.5 50.5

Flow
Property

Lane Capacities (veh)
20 21 22 23 24 25 29

Type Pattern Server Adaptive Server Adaptive Server Adaptive Server Adaptive Server Adaptive Server Adaptive Server Adaptive

Heavy
Flow

Best 22.4 27.11 20.96 27.11 18.0 27.11 13.33 27.11 8.33 27.11 8.27 27.11 8.29 27.11
Avg 70.1 57.2 42.2 57.2 51.45 57.2 63.3 57.2 50.44 57.2 48.1 57.2 42.63 57.2
Worst 28.19 11.24 22.14 11.24 17.13 11.24 15.31 11.24 12.54 11.24 10.74 11.24 10.12 11.24

residual queues in the lanes change. It can be noticed that as the
lane capacities increase, the server based approach has more
laxity in managing the traffic since the possibility of queue
spillback reduces and hence has less variations in cycle lengths.
Due to this changing cycle lengths, along with varying green
times, our server based approach is able to avoid spillbacks
while still guaranteeing performance in terms of wait times
of the vehicles. Since there is a constant flow of incoming
traffic, the cycle lengths for both cases shown in Figure 6
tend to settle at a stable value. This happens once the residual
queues are dispatched and the lanes have balanced vehicle
occupancy. Since the adaptive approach presented in [28] does
not continually update the cycle lengths with the incoming
traffic, residual queue and lane capacity, frequent spillbacks
are observed.

It is important to note that in a few cases the delay experi-
enced by the vehicles in the server based approach is slightly
higher than the existing approaches, but none of the queues
spillback. Queue spillbacks are known to cause disruptive
effects on a transportation network which can also impede the
emergency response vehicles’ paths and cause delays in their
response times. Hence, it is a fair tradeoff to have a small
increase in travel time than to experience spillbacks, as while
an increase in travel time reduces drivers’ satisfaction, it does
not adversely affect the entire transportation network.

VII. EXPERIMENTAL VALIDATION

This section describes the validation of our approach on
a hardware testbed consisting of small robots that emulate
vehicular traffic for an urban intersection. Pre-timed traffic con-
trol, adaptive elastic traffic control, and our proposed approach
are implemented on the testbed. Due to space constraints,
we only show the comparison between our approach and the
elastic adaptive traffic control. Similar results were obtained
when pre-timed traffic control technique was implemented,
with increased spillbacks.

A. Setup

Our experimental testbed consists of 30 small size robots,
each representing a vehicle. Each robot, henceforth referred as
vehicle, is affixed with multiple IR markers. These markers
are tracked by the Optitrack motion capture system consisting
of 24 IR cameras and the Motive software that captures the
vehicle positions. This position data is then streamed to a
command computer where an interface application utilizing
the Robot Operating System (ROS) [44] framework makes the

gathered positions for each vehicle available to our controller
application. This application processes the position data and
sends control commands (left wheel and right wheel velocity)
accordingly to each individual vehicle.

1) Controlling multiple vehicles: The controller application
implemented on ROS works in the following manner:
• The raw position data from the software is processed using a

Kalman filter to reduce camera sensor noise and accurately
estimate the position in 2-D space as well as the velocity.

• Pre-planned map with path coordinates resembling eight
lanes entering and exiting an intersection (as shown in
Figure 7) are stored in the database.

• Depending on the estimated position of the vehicle in the
testbed, one path is assigned to it out of the eight available
paths (lanes).

• A pure pursuit controller [45] utilizes the estimated location
of the vehicle, as well as the assigned path coordinates to
calculate the angular velocity command required for each
vehicle to stay in its defined path.

• The estimated data of all vehicles is used to calculate the
relative distance between the consecutive vehicles. This is
then fed to a high level controller which implements the
intelligent driver model (IDM) [46].

• IDM calculates the acceleration values for each vehicle
depending on the relative distances. IDM is a widely used car
following model used to emulate freeway and urban traffic
driving, and the acceleration value output closely resembles
human driving conditions and reaction delays as per various
tuning parameters [46].

• As the vehicles only act upon instantaneous velocity com-
mands, these acceleration values along with current mea-
sured velocities are used to calculate the desired velocities
for each vehicle. The desired linear velocities for the vehicles
are achieved using a PI controller which acts as our low
level controller. This controller calculates the linear velocity
commands for each vehicle such that the measured and the
desired velocities match.
2) Emulating vehicles at an intersection using robots:

Each vehicle is represented by a robot consisting of a 32-
bit ARM-based mbedNXP LPC1768 microcontroller on the
Pololu m3pi platform interfaced with Digi Xbee receivers. The
corresponding Xbee transmitter is connected to the command
computer. These Xbee modules establish a wireless communi-
cation channel using the Zigbee protocol over which the angu-
lar and linear velocity commands calculated for each vehicle
using our controller application are broadcast. The firmware



Fig. 7: Hardware setup emulating an urban intersection.

on these vehicles receive the broadcast messages and calculate
the left and right wheel speeds from the received angular
and linear velocities as per the differential drive kinematics
model. Similar setup has been used to emulate and study
the behavior of vehicles in a realistic environment [47]. The
delays pertaining to the traffic flow (tl and h, explained in
Section III) are incorporated in the controller application and
the vehicles are commanded accordingly. The real-time server
timing parameters are calculated in accordance to the ROS’
timing framework. Figure 7 shows our hardware setup with
lane markings superimposed on the image for clarity. While our
setup does not have physical traffic lights, the vehicle positions
are tracked and are commanded to stop if the lane does not
have access to the intersection (traffic light for the lane is red).
If the vehicles are joining an existing queue, they stop at a
safe distance governed by the IDM parameters. Once the light
turns green, the vehicles are commanded to accelerate as per
the reaction delay parameters. A video of our experiment can
be found online [48].

B. Results

Due to lack of space, we only show the results for the
best case flow where all the vehicles arrive and join the
queue right at the beginning of the green time with medium
traffic flow. Nevertheless, the data presented here are generally
representative. Figures 8 and 9 show the distance of all the
vehicles in lane L3 from L3’s stop line as a function of time.
A decreasing (increasing) distance over time indicates that a
vehicle is moving closer to the stop line to cross the intersection
(away from the intersection). A constant distance over time is
an indication that the vehicle is stationary.

Figure 8 shows that using the elastic adaptive control tech-
nique results in more than eight vehicles queuing up in L3,
between time 9 s and 13 s, causing a spillback, when the lane
capacity is set to 8 vehicles. In contrast, from Figure 9 it can
be seen that, since the vehicle flow rate is 6 veh/min, and the
existing queue length is 4 veh in L3, the server based approach
selects the cycle time of 40 s, such that the number of vehicles
in L3 do not exceed the capacity of 8 vehicles. Even though

Vehicles in 
lane > 8

All vehicles 
cross within 
given cycle

Fig. 8: Distance from stop line as a function of time for vehicles
in lane L3 using the elastic scheduling technique and medium
flow.

Vehicles in 
lane < 8

Vehicles 
crossed within 

this cycle

Vehicles still in 
queue for next 

cycle

Fig. 9: Distance from stop line as a function of time for vehicles
in lane L3 using our server based approach.

four vehicles were not able to clear the intersection in this
cycle, spillbacks do not occur.

VIII. CONCLUSIONS

In this paper, we modeled traffic control at a signalized inter-
section as a real-time scheduling problem. By using sporadic
servers to schedule vehicles needing to cross an intersection,
we formulated an approach to calculate the cycle length and
distribute budget for the servers such that queue spillbacks
are minimized, if not avoided. We also provided a worst-
case delay analysis for the vehicles crossing the intersection
when using our approach. With the help of simulations, we
compared our approach with an intelligent pre-timed traffic
control as well as an adaptive elastic traffic control technique.
It is observed that, with the proposed approach, spillbacks were
avoided when possible, even with unbalanced incoming traffic
and reduced lane capacities. Results also showed a 10–50%
improvement in average delay experienced by the vehicles as
compared to the pre-timed control and the adaptive elastic
control techniques. Our experiments on a hardware testbed
provide similar conclusions. In our future work, we plan on
deriving how to best allocate the leftover budgets and consider
more than one intersection.
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