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Abstract
Task parameters in traditional models, e.g., the generalized multiframe (GMF) model, are fixed
after task specification time. When tasks whose parameters can be assigned within a range, such as
the frame parameters in self-suspending tasks and end-to-end tasks, the optimal offline assignment
towards schedulability of such parameters becomes important. The GMF-PA (GMF with parameter
adaptation) model proposed in recent work allows frame parameters to be flexibly chosen (offline)
in arbitrary-deadline systems. Based on the GMF-PA model, a mixed-integer linear programming
(MILP)-based schedulability test was previously given under EDF scheduling for a given assignment of
frame parameters in uniprocessor systems. Due to the NP-hardness of the MILP, we present a pseudo-
polynomial linear programming (LP)-based heuristic algorithm guided by a concave approximation
algorithm to achieve a feasible parameter assignment at a fraction of the time overhead of the
MILP-based approach. The concave programming approximation algorithm closely approximates the
MILP algorithm, and we prove its speed-up factor is (1 + δ)2 where δ > 0 can be arbitrarily small,
with respect to the exact schedulability test of GMF-PA tasks under EDF. Extensive experiments
involving self-suspending tasks (an application of the GMF-PA model) reveal that the schedulability
ratio is significantly improved compared to other previously proposed polynomial-time approaches
in medium and moderately highly loaded systems.
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1 Introduction

A generalized multiframe (GMF) task, whose model [3] generalizes the multiframe task
model [16] (MF) and the sporadic task model, consists of a number of ordered frames where
each frame has its own execution time, relative deadline, and frame separation time (the
minimum interval between two frames’ release times). The GMF model generalizes the
sporadic model by using a set of ordered frames to represent an instance of a sporadic task.
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20:2 Fast and Effective Multiframe-Task Parameter Assignment

Instead of setting an identical implicit frame deadline and minimal separation time for each
frame as in the MF model, the GMF model assigns each frame an individual deadline and a
minimum frame separation time.

The multiframe models (GMF/MF) have many applications. For example, Andersson [1]
presented the schedulability analysis of flows in multi-hop networks comprising software-
implemented Ethernet switches according to the GMF model. Ding et al. [11] scheduled a set
of tasks with an I/O blocking property under the MF model. The self-suspension tasks [18]
can be represented using the GMF model but the problem size can be very large, e.g., in
automotive systems. In the keynote [7] of ECRTS 2012, Buttle has shown many scheduling
challenges as the number of ECUs in vehicles increases rapidly each year; there are more
than 100 ECUs nowadays and each task can easily have 50-300 functions. In such complex
systems, there are several self-suspension tasks (each consisting of multiple functions) and
their end-to-end latencies need to be maintained in distributed settings.

The GMF model increases flexibility compared to the sporadic and MF task models, and
all parameters in the GMF model are typically not mutable after task specification time.
However, frame parameters can be adjustable (under the constraints of task parameters) to
improve schedulability in applications such as the self-suspension tasks [20] and end-to-end
flows [19]. Frame parameters are mainly used to maintain execution order in such applications
(e.g., frame priorities in FP scheduling and frame deadlines in EDF scheduling [22]). In order
to optimally assign parameters to improve schedulability, Peng and Fisher [18] extended the
GMF model and presented the GMF with parameter adaptation model (GMF-PA). In the
GMF-PA model, frame deadlines and separations can be selected under a set of constraints.
In this flexible model, frame parameters are optimally assigned (towards schedulability)
offline for each frame under the MILP algorithms [18].

Although the GMF-PA model is more flexible, it has been shown that both the feasibility
and the parameter selection problems are very hard to solve. On the feasibility side, Ekberg
and Yi [12] proved that the feasibility of sporadic task systems remains coNP-complete under
bounded utilization. On the parameter selection side, the priority assignment of subtasks in
end-to-end task systems (originally the classical job-shop scheduling algorithm) has been
shown to be NP-hard [13]. The scheduling of self-suspending tasks (even for self-suspending
tasks with at most two frames) is NP-hard in the strong sense [21].

In order to address the feasibility test and parameter selection problem, Peng and
Fisher [18] gave an exact schedulability test of GMF-PA tasks when frame parameters
are integers. The test is based on mixed-integer linear programming (MILP) under EDF
scheduling in uniprocessor systems. A sufficient, MILP-based schedulability test was also
developed. Although this sufficient approximation algorithm [18] is quite efficient, it is
still MILP-based and thus may require exponential-time to solve in general. The goal and
contribution of this paper are to give an efficient linear programming-based algorithm that
can determine the feasibility and select the frame parameters of GMF-PA tasks.

The MILP-based algorithm contains a set of integer variables which form a set of staircase
functions/constraints (detailed in Section 5). To transform the MILP-based algorithm into a
LP-based algorithm, our idea is to use a set of linear functions to approximate all staircase
functions. As such, the selection of the slope values of the linear functions is directly related
to the schedulability of a system; if the slope values are not properly set, the linear functions
can grossly over-approximate, resulting in low schedulability ratio (the number of successfully
scheduled systems over the total tested).

In order to get a close approximation, we first use a set of concave functions that very
closely tracks the demand staircase functions to incur only a very small speed-up factor
compared to the MILP algorithm. Since there exist no known efficient methods to solve
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concave programming problems, we use the concave functions to guide the slope assignment
of linear functions in our iterative LP-based algorithm. That is, the LP algorithm runs
multiple times during which the algorithm adjusts the slopes of the linear functions based
on the concave functions. According to experiments, after a small number of iterations, the
LP-based algorithm can approach (or reach) the local optimal1. We apply the LP-based
algorithms to schedule self-suspending tasks under EDF scheduling in uniprocessor systems
as a test case.

Our Contributions:
We give a concave approximation algorithm based on the MILP algorithm and prove the
speed-up factor of the algorithm is (1 + δ)2 with respect to the exact schedulability test
of GMF-PA tasks under EDF scheduling on uniprocessors. The positive constant δ is a
user-defined constant which can be made arbitrarily close to zero.
Since there is no known tractable way to solve a concave programming problem, we
develop a LP-based heuristic algorithm based on the concave approximation algorithm
for GMF-PA tasks. The LP-based algorithm is an efficient schedulability test and can
select frame parameters at the same time.
We apply the LP-based algorithm to schedule multiple-suspending tasks. To exploit
the unique property of one-suspending tasks, as opposed to multi-suspending tasks, we
present an improved heuristic algorithm for GMF-PA tasks.
We conduct extensive experiments and show that the LP-based algorithms with fixed
numbers of iterations outperform previous work in terms of schedulability and average
running time. The fixed numbers of iterations make the LP-based algorithms pseudo-
polynomial (the input size depends on the maximum interval length [3]), which is more
efficient than the MILP-based approach.

Section 2 surveys the related work. We review our GMF-PA model in Section 3, and we
formally state the goal of this paper in Section 4. Section 5 reviews our parameter-adaptation
method using mixed-integer linear programming (MILP) to obtain a schedulability test under
EDF scheduling. The concave approximation algorithm based on the MILP algorithm is
presented in Section 6. Since concave programming algorithm does not scale well, two iterative
LP-based algorithms are presented in Section 7. After applying the LP-based algorithms
to self-suspending tasks, Section 8 provides extensive experimental results compared to
state-of-the-art results. At last, Section 9 concludes this work and proposes future work.

2 Related Work

In this section, we introduce the related work on the GMF-PA model in Section 2.1, and
survey one of its applications, the self-suspending tasks, in Section 2.2.

2.1 The Generalized Multiframe Model
The generalized multiframe model (GMF) was presented by Baruah et al.[3] to extend
the sporadic task model and multiframe task model (MF) [16]. The recurring real-time
task (RRT) model [2] generalizes the GMF model to handle conditional code. The digraph
model [23] further generalizes the RRT model to allow arbitrary directed graphs (with loops),

1 The local optimal of the iterative LP-based algorithm is reached when all variables converge.
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and it was shown that the feasibility problem on preemptive uni-processor systems remains
tractable (pseudo-polynomial complexity with bounded system utilization). A complete
review is surveyed by Stigge and Yi [24].

The GMF model has great advantages and has been applied to multiple areas, as described
earlier. However, current related models typically assume that parameters are fixed during
task specification time. In the GMF-PA model [18] which extends the GMF model, frame
parameters are flexible and can be chosen by the MILP-based approach in uniprocessor
systems. The dGMF-PA model [19] extends the GMF-PA model to represent end-to-end
flows in distributed systems. Similar flexible models, such as the parameter-adaptation
model [8] and elastic model [6], are also used in many applications.

2.2 The Self-Suspending Task Model
A typical self-suspension task model [15] contains two computational frames separated by a
self-suspending frame. After the first computational frame finishes, the job suspends executing
the other computational frame until an external operation completes. The order of the frames
is required and a task suspends itself to communicate with external devices, I/O operations,
computation offloading, etc. We call such tasks one-suspension self-suspending tasks.

For one-suspension self-suspending tasks, Ridouard et al. [21] proved that scheduling
such periodic self-suspending tasks on a uniprocessor is NP-hard in the strong sense. Due to
the hardness of such scheduling problems, Chen and Liu [9] gave a fixed-relative-deadline
(FRD) scheduling algorithm to improve the schedulability of sporadic self-suspending tasks
on uniprocessor systems. The FRD algorithm assigns frame relative deadlines and schedules
the ordering of frames of tasks under EDF scheduling.

The multiple-segment suspending task model [14], which allows multiple suspending
frames, explicitly considers the execution sequence of frames in a task. Peng and Fisher [18]
utilize MILP to select frame parameters of multiple-segment self-suspending tasks. The
MILP algorithm [18] is an optimal FRD algorithm which extends the work by Chen and
Liu [9]. A recent review on scheduling self-suspending tasks (mostly on one-suspension tasks)
can be found in the work by Chen et al. [10].

3 Model

We review the generalized multiframe (GMF) model [3] and the generalized multiframe
model with parameter adaptation (GMF-PA) in this section.

A GMF task τi consists of a set of ordered frames and each frame φji has its own execution
time Eji , relative deadline Dj

i , and frame separation time P ji . All frames of a task τi can
be represented by the 3-vector tuple (−→Ei,

−→
Di,
−→
Pi) where −→Ei=[E0

i , E1
i ,..., E

Ni−1
i ], −→Di=[D0

i ,
D1
i ,..., D

Ni−1
i ], and −→Pi=[P 0

i , P 1
i ,..., P

Ni−1
i ]. The `’th frame of task τi arrives at time a`i , has

deadline at a`i + d`i , and worst-case execution time e`i . Since frames arrive in sequence, the
`’th frame corresponds to frame φ` mod Ni

i , and we have:
1. a`+1

i ≥ a`i + P ` mod Ni
i

2. d`i = D` mod Ni
i

3. e`i = E` mod Ni
i

Based on the GMF model, the GMF-PA model [18] is derived to allow frame parameters
to be assigned instead of fixing them during task specification time. Let T = {τ0, τ2,...,
τn−1} be the task system of n GMF-PA tasks executing on one processor. The task τi=[φ0

i ,
φ1
i , φ2

i ,..., φ
Ni−1
i ] consists of Ni frames where φji=(Eji , D

j
i , D

j

i , P
j
i , P

j

i ). The j’th frame



B. Peng, N. Fisher, and T. Chantem 20:5

execution time of the i’th task is Eji , and the i’th task-wise execution time is Ei =
Ni−1∑
j=0

Eji .

The lower bound of relative deadline Dj
i (respectively, the minimum inter-arrival time

between consecutive frames, P ji ) is Dj
i (respectively, P ji ) and the upper bound of Dj

i

(respectively, P ji ) is D
j

i (respectively, P ji ). The frame parameters Dj
i and P ji can be flexibly

assigned in the ranges [Dj
i , D

j

i ] and [P ji , P
j

i ], respectively. The frame distance Dj,k
i = Dk

i

+
(k−j−1) mod Ni∑

p=0
P

(j+p) mod Ni

i represents the relative time between the release of the j’th

frame and the deadline Dk
i of the k’th frame. For example, D2,4

i = P 2
i + P 3

i + D4
i . The task

deadline Di is the upper bound of DNi−1
i +

Ni−2∑
j=0

P ji , and the task minimum inter-arrival

time Pi is the upper bound of
Ni−1∑
j=0

P ji . The utilization of task τi is Ui = Ei/Pi, and the

utilization of a task system is Ucap =
n−1∑
i=0

Ui.

Frame parameters (Dj
i and P ji ) must satisfy the localized Monotonic Absolute Deadlines

(l-MAD) property [3] to maintain frame execution order. That is, the absolute deadline of the
j’th frame must be no later than the one of the j + 1’th frame (Dj

i ≤ P ji + D
(j+1) mod Ni

i ,
∀i, j). Figure 1 shows an example of the GMF model with the l-MAD property. The
l-MAD property is widely used in systems which use first-in first-out (FIFO) scheduling for
a shared resource. E.g., a network can be seen as a shared resource and packets sent from a
computational node to a network node follow FIFO scheduling.

Ej
i Ej+1

i

Execution Time

· · ·
Dj

i

P j
i P j+1

i

Dj+1
i

Ej+2
i

Dj+2
i

P j+2
i

Ej−1
i

P j−1
i

Dj−1
i

· · ·

Figure 1 This figure contains all task τi’s ordered frames from the j’th frame to the (j − 1)
mod Ni’th frame (we omit “mod Ni” in this figure for simplicity). The starting frame can be any
frame φji in an interval length t. Note that each frame deadline can be larger than frame separation
time, e.g., Dj+1

i ≥ P j+1
i in this figure. The details will be shown in Section 5.

4 Problem Statement

Let dbfi(t, ~Fi) be the task demand bound function of a GMF-PA task τi within the interval
length t. Let ~Fi = [D0

i , P 0
i , D1

i , P 1
i ,..., D

Ni−1
i , PNi−1

i ] represent an assignment of values
for all the task parameters (frame deadline and separations) of task τi. The task demand
bound function dbfi(t, ~Fi) accounts for task τi’s accumulated execution time of frames which
have both release times and deadlines inside the interval of length t. We use the notation
dbfi(t,Dj,k

i ) to represent the demand for the k’th frame when the first frame to arrive in
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the interval length t is the j’th frame. The relationship between the frame demand and
task demand will be presented in Section 5. In a uniprocessor system T , the sufficient and
necessary condition for schedulability of a task set T is shown in Equation 1.∑

τi∈T
dbfi(t, ~Fi) ≤ t, ∀t. (1)

I Problem Definition. Given the above model, our goal is to find an optimal and valid
assignment ~Fi of frame parameters of all tasks so that the worst-case demand

∑
τi∈T dbfi(t, ~Fi)

over all time intervals of length t is minimized.

5 The MILP Algorithm

We review the MILP algorithm [18] to solve the problem defined in Section 4 under EDF
scheduling in uniprocessor systems since the proposed concave programming and LP-based
algorithms are closely related to the MILP algorithm.

Figure 2 shows the MILP algorithm. Notations in bold font are constants and the other
notations are variables. Lines 3 and 5 are the requirements that a feasible system must obey.
Line 4 shows the l-MAD property. Line 6 shows the calculation of the demand for every
possible sequence of frames of task τi over any interval of length t. To calculate all possible
frame demands, we use the notation2 yj,ki (t) to denote the demand of the k’th frame of task
τi starting from the j’th frame over a t-length interval. To calculate the worst-case demand
under EDF scheduling, the starting j’th frame arrives exactly at the start of the interval and
subsequent frames arrive as soon as possible (e.g., see [3] for GMF schedulability).

The inequality t−tb
Pi
≤ xj,ki (t)− realmin

Pi
is the constraint function that decides the value

of xj,ki (t) where xj,ki (t) decides the value of yj,ki (t) in turn. The length tb is the summation
of the previous periods b tPi

c · Pi and the frame distance from the starting j’th frame to
k’th frame Dj,k

i , and the constant realmin is the smallest representable positive number for
the MILP solver. For example, the length tb = D1,3

i + b tPi
c · Pi if we consider the interval

starting with an arrival of the first frame and ending at the deadline of the third frame.
When t ≥ tb, the integer variable xj,ki (t) ∈ [0, 1] must be one for the inequality in Line 6 to
be feasible and the demand Eki contributes to yj,ki (t). When t < tb, xj,ki (t) can be either
zero or one. However, the MILP tends to choose zero for xj,ki (t) to obtain a smaller demand
(shown in Lemma 1). We calculate demand yj,ki (t) for all possible combinations of i, j, k,
and t in Line 6. For simplicity, we use “∀” to represent the ranges of variables. The task
index i ranges from zero to n− 1. The superscripts j and k range from zero to Ni − 1. The
maximum integer interval length [3] H = d Ucap

1−Ucap
·maxτi∈τ (Pi)e.

I Lemma 1 (from [18]). The value of yj,ki (t) in the MILP is the exact worst-case demand
of frame φki over a t-length interval when the first frame to arrive in the interval is φji (with
respect to the frame parameters assigned to each frame of τi by the MILP).

Line 7 calculates task τi’s demand yji (t) whose starting frame in the t-length interval is
the j’th frame. In Line 8, the demand yi(t) is the maximum demand for τi over all yji (t). At

last, the demand of all tasks
n−1∑
i=0

yi(t) is set to be no larger than L · t as shown in Equation 1.

2 The term dbfi(t,Dj,ki ) represents the frame demand, and the term yj,ki (t) is a free variable in the
mathematical programming formulation that is used to calculate the demand dbfi(t,Dj,ki ).
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Parameter Selection and Exact Feasiblity Test.
1 minimize: L
2 subject to:
3 EkiE

k
iE
k
i ≤Dk

iD
k
iD
k
i ≤ D

k
i ≤D

k
iD
k
iD
k
i , ∀i, k.

EkiE
k
iE
k
i ≤ P kiP

k
iP
k
i ≤ P

k
i ≤ P

k
iP
k
iP
k
i , ∀i, k.

4 Dk
i ≤ P ki +D

(k+1) mod Ni
i , ∀i, k.

5
Ni−1∑
k=0

P ki ≤ PiPiPi, DNi−1
i +

Ni−2∑
j=0

P ji ≤ DiDiDi, ∀i.

6
yj,ki (t) = xj,ki (t) ·EkiEkiEki + b tttPiPiPi

c ·EkiEkiEki , ∀i, j, k, t.
ttt−tb
PiPiPi
≤ xj,ki (t)− realminrealminrealmin

PiPiPi
, ∀i, j, k, t.

tb = Dj,k
i + b tttPiPiPi

c · PiPiPi

7 yji (t) =
Ni−1∑
k=0

yj,ki (t), ∀i, j, t.

8 yi(t) ≥ yji (t), ∀i, j.

9
n−1∑
i=0

yi(t) ≤ L · ttt ∀t.

10 and: Dk
i , P

k
i , y

j,k
i (t), yi(t),L ∈ R∗, xj,ki (t) ∈ {0, 1} .

Figure 2 This figure shows the MILP algorithm [18]. In the concave programming and LP-based
algorithms (shown in Sections 6 and 7), we only change the frame demand in Line 6 and remove all
integer variables xj,ki (t).

If the system is schedulable, L ≤ 1. We minimize L in the MILP which also minimizes the
summation of all task demand over all interval lengths3 t. The MILP algorithm’s necessity
and sufficiency for feasibility are proved in Theorem 2.

I Theorem 2 (from [18]). For arbitrary, real-valued parameters, our MILP is a necessary
feasibility test when L ≤ 1. When frame parameters are restricted to be integers (i.e., Dk

i ,
P ki ∈ N ∀ i, k), then the MILP is an exact feasibility test when L ≤ 1.

6 The Concave Approximation Algorithm

We reviewed our previously proposed MILP in the last section. In this section, we give a
concave approximation algorithm for the MILP algorithm and prove the speed-up factor of
the concave approximation algorithm (compared to the optimal FRD/the MILP algorithm)
can approach one. Although there is no known efficient way to solve a concave programming
problem, our concave approximation algorithm plays a key role in the LP-based algorithms
presented in the next section.

6.1 The Concave Functions
We first use the concave function (Equation 2) (illustrated by the blue dashed curve of
Figure 3) to approximate the exact frame demand determined by the MILP in Line 6
of Figure 2.

3 We take integer-valued t since we cannot check all real-valued t. We also use integer constants t in the
concave programming and LP-based algorithms later.
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20:8 Fast and Effective Multiframe-Task Parameter Assignment

dbfconcavei (t,Dj,k
i ) = max {0, Eki · (1 + δ)− Eki · δ · e

µ·(Dj,k
i

+b t
Pi
c·Pi−t)}+ b t

Pi
c · Eki (2)

The concave programming algorithm is constructed by replacing all staircase functions in
Line 6 of Figure 2 with yj,ki (t) = dbfconcavei (t,Dj,k

i ) and removing all integer variables. The
other lines in Figure 2 remain the same.

Dj,k
i

Frame Demand

(0, Eki ) (t, Eki )

(t, 0)

(0, y′)
(0, Eki · (1 + δ))

(t′, 0) (t · (1 + δ), 0)

Figure 3 This example shows the frame demand within interval length t < Pi. The blue dashed
curve is a concave function and the staircase function in black solid line represents the exact frame
demand in the MILP. The red dotted staircase line with error rates δ on both axes represents an
upper bound on the concave function.

Equation 2 shows our proposed concave approximation function dbfconcavei (t,Dj,k
i ) (e.g.,

the blue dashed curve in Figure 3) for the k’th frame demand of task τi during the t-length
interval in which the starting frame is the j’th frame. We define the system-wide maximum
error rate4 δ. The rate δ must be larger than zero to ensure the demand of any approximation
function be larger than the staircase function for any given deadline. We set δ as a designer-
defined constant in the system, and set the constant µ = 1

δ · ln
(
1 + 1

δ

)
as shown in Lemma 3.

In Lemma 3, we prove that the maximum error rate of the concave function is smaller than
the system maximum error rate δ, and the concave function approaches the staircase function
when δ decreases.

I Lemma 3. The demand of the concave function in Equation 2 over-approximates the one
in the MILP algorithm, and the error rate of the concave function is smaller than the system
error constant δ when we set µ in Equation 2 as follows,

µ = 1
δ
· ln
(

1 + 1
δ

)
. (3)

Proof. Let δy and δd be the worst-case error rates on the demand (on y-axis) and deadline
(on x-axis) directions of concave functions, respectively. Let tb = Dj,k

i + b tPi
c · Pi − t. The

worst rates happen when, in Figure 3 for example, Eki · (1 + δy) = y′ and t · (1 + δd) = t′. We
will prove that δ ≥ δy and δ ≥ δd.

When 0 ≤ tb ≤ t, the largest demand of the concave function happens at tb = 0.
By substituting Eki · (1 + δy) (respectively, 0) for yj,ki (t) (respectively, tb), the concave
function becomes Eki · (1 + δy) = Eki · (1 + δ)− Eki · δ · eµ·(0−t). After simplification, we get

4 The error rate (with respect to the exact frame demand function) of an approximation function is its
percentage increase in the y-axis direction for t ≤ Dj,ki or its percentage increase in the x-axis dimension
if t > Dj,ki . The maximum error rate is the largest error rate over all t > 0. E.g., the error rate on
the x-axis of the point (t · (1 + δ), 0) in Figure 3 is δ. The maximum error rate of any approximation
function must be smaller than the system-wide maximum error rate δ.
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δy = δ − δ · eµ·(−t). Thus, δ ≥ δy and δ is an upper bound of δy. Since the concave function
is a decreasing function and it passes the points (0, Eki · (1 + δy)) and (t, Eki ), the concave
function over-approximates the corresponding demand in MILP when 0 ≤ tb ≤ t.

When tb > t, the maximum error on the deadline direction happens at tb = t · (1 + δd).
By substituting 0 (respectively, t · (1 + δd)) for yj,ki (t) (respectively, tb), we have 0 =
Eki · (1 + δ)−Eki · δ · eµ·(t·(1+δd)−t). After simplification, we have δd = 1

t·µ · ln(1 + 1
δ ). We set

µ = 1
δ · ln(1 + 1

δ ), and δd = δ
t after replacing µ in δd. Since t ≥ 1, δ ≥ δd. J

6.2 Speed-Up Factor Analysis
A speedup factor is a value that quantifies the quality of an approximation algorithm with
respect to the optimal scheduling algorithm. A speedup factor S > 1 [4] means that an
approximation algorithm can schedule a task system at a speed-S processor if an optimal
algorithm can schedule the system at a speed-one processor.

Let LMILP be the value of the objective function returned by the MILP algorithm and
Lconcave be the value returned by the concave programming algorithm. We will prove that
LMILP < Lconcave < LMILP · (1 + δ)2. LMILP < Lconcave indicates that a task system
will be deemed schedulable by the MILP algorithm if the system is schedulable by the
concave programming algorithm (which means LMILP < Lconcave ≤ 1). By the definition of
the speed-up factor, Lconcave < LMILP · (1 + δ)2 indicates that the speed-up factor of our
concave programming algorithm is (1 + δ)2 with respect to the MILP algorithm. In other
words, Lconcave/(1 + δ)2 < LMILP indicates a task system can be scheduled by the concave
programming algorithm under a (1 + δ)2-speed processor if the system can be scheduled by
the MILP algorithm under the corresponding one-speed processor.

We prove LMILP < Lconcave in Lemma 4, and Lconcave < LMILP · (1+δ)2 from Lemma 5
to Lemma 8. By Lemmas 4 and 8, we prove that the speed-up factor of our concave
programming algorithm is (1 + δ)2 with respect to the MILP algorithm in Theorem 9.

I Lemma 4. Let LMILP and Lconcave be the values returned by the MILP and concave
programming algorithms (assume they exist), respectively. We have:

LMILP < Lconcave. (4)

Proof. Let L′MILP be the value calculated as follows. Assume there exists such a solver
that can solve the concave programming algorithm and return Lconcave, frame deadlines
and separations. We assign the returned frame parameters from the concave programming
algorithm to the formulation of the MILP algorithm and get the value of L′MILP .

Under the same values of frame parameters, any frame demand of concave programming
algorithm is larger than its corresponding demand of the MILP algorithm, as shown in
Lemma 3. The task demands of concave programming algorithm with the preassigned
frame parameters are thus also larger than the ones from the MILP approach. When we
summarize task demands over any interval length, L′MILP is thus always less than Lconcave.
Since L′MILP is calculated by preassigned frame parameters, L′MILP must not be smaller
than LMILP . If the frame parameters returned by the MILP and concave programming
algorithms are all identical, L′MILP = LMILP . In all, LMILP ≤ L

′

MILP < Lconcave and this
lemma is proved. J

In order to prove Lconcave < LMILP · (1 + δ)2, we first define L′concave. Let the MILP
algorithm return LMILP , frame deadlines and separations. If we fix the deadline and
separation variables of the concave programming formulation to be the values returned by the
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MILP, we calculate the value of L′concave. We will prove Lconcave ≤ L
′

concave < LMILP ·(1+δ)2.
Lconcave ≤ L

′

concave is proved in Lemma 5. Based on the demand bound functions defined in
Equations 8 and 9, we prove L′concave < LMILP · (1 + δ)2 in Lemma 8.

I Lemma 5. Let Lconcave be the optimal value returned by the concave programming algorithm,
and L′concave be the value calculated by the concave programming algorithm using the frame
parameters returned by the MILP. We have:

Lconcave ≤ L
′

concave. (5)

Proof. Since the concave programming algorithm minimizes Lconcave, Lconcave must be
the smallest value over all feasible-assigned/preassigned frame parameters, and Lconcave <
L′concave. If frame parameters returned by the MILP and concave programming algorithms
are same, Lconcave = L′concave. In all, Lconcave ≤ L

′

concave. J

For ease of proof, we consider a staircase approximation function dbfai (t,Dj,k
i ) illustrated

by the red dotted line in Figure 3 for task τi over the t-length interval, and the solid line
shows an example of the staircase demand dbfi(t,Dj,k

i ).
Equation 6 shows dbfi(t,Dj,k

i ) as the k’th frame-demand function of task τi over the
t-length interval that starts with the j’th frame. The corresponding task demand dbfi(t, ~Fi)
is shown in Equation 8, and the reasoning is same as to the relationship between yi(t) and
yj,ki (t) in the MILP algorithm. I.e., we take the maximum demand over all sequences as the
task demand. The approximate frame-demand dbfai (t,Dj,k

i ) and task-demand dbfai (t, ~Fi) (for
dbfi(t,Dj,k

i ) and dbfi(t, ~Fi), respectively) are defined in Equations 7 and 9, respectively. We
prove that the approximation demand over-approximates the concave demand in Lemma 6.

dbfi(t,Dj,k
i ) =

0, 0 ≤ t < Dj,ki
Eki , Dj,ki ≤ t ≤ Pi
Eki · b tPi

c+ dbfi(t− Pi · b tPi
c, Dj,ki ), t > Pi

(6)

dbfai (t,Dj,k
i ) =


0, 0 ≤ t < D

j,k
i

(1+δ)

(1 + δ) · Eki ,
D

j,k
i

(1+δ) ≤ t ≤ Pi
Eki · b tPi

c+ dbfai (t− Pi · b tPi
c, Dj,k

i ), t > Pi

(7)

dbfi(t, ~Fi) = Ni−1max
j=0
{
Ni−1∑
k=0

dbfi(t,Dj,k
i )} (8)

dbfai (t, ~Fi) = Ni−1max
j=0
{
Ni−1∑
k=0

dbfai (t,Dj,k
i )} (9)

I Lemma 6. The demand of task τi over any interval length t in Equation 9 is an upper
bound of its corresponding concave approximation demand.

Proof. In Lemma 3, we proved that δd ≤ δ. Let t∆ = t− Pi · b tPi
c. From Equation 2 and

the definition of δd, the concave demand with any value assigned for Dj,k
i ∈ [0, t∆ · (1 + δd)]

is smaller than Eki · (1 + δ), and the demand is zero when Dj,k
i > t∆ · (1 + δd). Since

dbfai (t,D
j,k
i ) = Eki · (1 + δ) when Dj,k

i ≤ t∆ · (1 + δ) and δd ≤ δ, the demand function
dbfai (t,Dj,k

i ) over approximates the concave demand. For task-wise demand dbfai (t, ~Fi), we
take the summation of all frame demand dbfai (t,Dj,k

i ) of task τi over all sequences (sequences
differ from the starting j’th frame in the t-length interval), and take the maximum demand
over all sequences as the task demand. The task demand dbfai (t, ~Fi) also over approximates
the corresponding concave demand. In all, we have proved this lemma. J
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With the demand bound functions shown in Equations 8-9, we prove L′concave < LMILP ·
(1 + δ)2 in Lemmas 7-8.

I Lemma 7. For the task τi’s demand dbfi(t, ~Fi) and its approximation demand dbfai (t, ~Fi)
in the t-length time interval, we have: dbfi((1 + δ) · t, ~Fi) · (1 + δ) ≥ dbfai (t, ~Fi).

Proof. We first prove dbfi((1 + δ) · t,Dj,k
i ) · (1 + δ) ≥ dbfai (t,Dj,k

i ), and dbfi((1 + δ) · t, ~Fi) ·
(1 + δ) ≥ dbfai (t, ~Fi) can be extended by Equations 8 and 9. We classify all interval lengths t
in three sets:

T1 : 0 ≤ t < Dj,k
i /(1 + δ),

T2 : Dj,k
i /(1 + δ) ≤ t ≤ Pi,

T3 : otherwise.
When t ∈ T1, dbfi(t,Dj,k

i ) = dbfai (t,Dj,k
i ) = 0. Since demand bound functions are monoton-

ically increasing functions, dbfi((1 + δ) · t,Dj,k
i ) · (1 + δ) ≥ dbfi(t,Dj,k

i ) = dbfai (t,Dj,k
i ).

When t ∈ T2, we know that dbfi(t∗, Dj,k
i ) = Eki at Dj,k

i ≤ t∗ ≤ Pi from Equation 6. Let
t∗ = t ·(1+δ), we have dbfi(t ·(1+δ), Dj,k

i ) = Eki at Dj,k
i /(1+δ) ≤ t ≤ Pi. From Equations 6

and 7, we know that dbfi(t · (1 + δ), Dj,k
i ) · (1 + δ) = dbfai (t,Dj,k

i ) at Dj,k
i /(1 + δ) ≤ t ≤ Pi.

When t ∈ T3, it is trivial to see the fact that dbfi((1 + δ) · t,Dj,k
i ) · (1 + δ) ≥ dbfai (t,Dj,k

i )
since the demand is iteratively calculated from the demand when t ∈ T1 ∪ T2. J

I Lemma 8. Let LMILP be the optimal value returned by the MILP algorithm, and L′concave
be the value calculated by the frame parameters returned by the MILP. We have:

L
′

concave < LMILP · (1 + δ)2. (10)

Proof. Line 9 of Figure 2 shows that L is the largest value of
∑n−1

i=0
yi(t)

t for all values of t in
the MILP algorithm (can be derived from Lemma 1). We also require this line in the concave
programming algorithm. From Lemma 7, we know that dbfi((1+δ)·t, ~Fi)·(1+δ) ≥ dbfai (t, ~Fi)
for any task τi over any t-length interval. Let t = (1 + δ) · t∗, we have:

LMILP = max
t>0

∑
τi∈T

dbfi(t, ~Fi)
t

By Lemma 1

=
∑

τi∈T
dbfi((1 + δ) · t∗, ~Fi)
(1 + δ) · t∗

=
∑

τi∈T
dbfi((1 + δ) · t∗, ~Fi) · (1 + δ)

(1 + δ)2 · t∗

≥

∑
τi∈T

dbfai (t∗, ~Fi)
(1 + δ)2 · t∗ By Lemma 7

≥ L
′
concave

(1 + δ)2 By Lemma 6
(11)

J

I Theorem 9. When the concave programming algorithm returns integer frame deadlines
and separation times, the speed-up factor of our concave programming algorithm with respect
to the MILP algorithm is (1 + δ)2.

Proof. In Lemmas 4, 5, and 8, we have proved that LMILP < Lconcave < LMILP · (1 + δ)2.
LMILP < Lconcave indicates that a task system is deemed schedulable (with integer frame
parameters) by the MILP if the task system is deemed schedulable (with integer parameters)
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The LP-based Algorithm for GMF-PA tasks.
1 Initialize D as Dk

i ← (Eki /Ei) · Pi, Llast ←∞, and Lcur ←∞
2 repeat
3 Llast ← Lcur

4 S ← computeSlope(D)
5 [D,Lcur]← Heuristic-LP (D,S)
6 until Llast − Lcur < ε

7 Process frame deadlines D to integers.
8 [Lcur]← Heuristic-LP -fixedDeadline(D,S)
9 if Lcur ≤ 1

10 then return schedulable

11 else return unschedulable

Figure 4 The LP-based algorithm for GMF-PA tasks.

by the concave programming algorithm. LMILP < Lconcave shows our concave programming
algorithm is an approximation algorithm for the MILP.

We divide (1 + δ)2 on both sides of the inequality Lconcave < LMILP · (1 + δ)2 to get
Lconcave/(1 + δ)2 < LMILP . Lconcave/(1 + δ)2 represents that we change the speed of the
processor from one to (1 + δ)2. Thus, a task system must be scheduled by the concave
programming algorithm with a (1 + δ)2-speed processor if the task system is scheduled by
the MILP on a single speed processor. From the definition of the speed-up factor, we have
proved that the speed-up factor of our concave programming algorithm with respect to the
MILP is (1 + δ)2. J

7 The Linear Programming-Based Heuristic Algorithm and its
Application to One-Suspension Self-Suspending Tasks

Until now, we have constructed the concave programming approximation algorithm for the
MILP-based algorithm. Due to the difficulties in solving concave programming (or non-convex
optimization) problems in general, we use a heuristic LP-based scheme to efficiently select
frame parameters of GMF-PA tasks, and apply it to self-suspending tasks. For ease of
presentation, we let Dk

i = Eki , D
k

i = Pi, and P ki = Dk
i . In this case, frames deadlines are

constrained by frame execution time and the l-MAD property. We present the LP-based
heuristic algorithm in Section 7.1, and further to optimize the LP-based algorithm to schedule
one-suspension self-suspending tasks in Section 7.2.

7.1 The Linear Programming-Based Heuristic Algorithm
The general routine of the LP-based scheme for GMF-PA tasks is: 1) We initialize frame
parameters of GMF-PA tasks. 2) Given the frame parameters, we recalculate a set of linear
functions, which approximate the staircase functions for frame demands in the MILP, guided
by the concave programming algorithm. 3) We run the LP algorithm (shown later) based on
the assigned linear functions, and receive frame parameters as outputs. If the difference in L
values between the current and the last iterations is no smaller than some threshold, the
program goes back to Step 2. 4) We round frame parameters to integers and run the LP
algorithm with the fixed integer-valued parameters to get the final assignment.

dbflinear
i (t,Dj,k

i ) = max {0, sj,ki (t) · (Dj,k
i − t

′) + Eki }+ b tPi
c · Eki , t′ = t− b tPi

c · Pi (12)
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computeSlope(D).
1 Calculate all Dj,k′

i from D

2 t′ ← t− b tPi
c · Pi

3 yj,k
′

i (t′)← Eki · (1 + δ)− Eki · δ · eµ·(D
j,k′
i
−t′)

4 if Dj,k′

i > t′

5 then sj,ki (t)← (0− Eki )/( 1
µ
· ln(1 + 1

δ
) + t′ − t′)

6 elseif Dj,k′

i == t′

7 then sj,ki (t)← ∂

∂D
j,k
i

[
dbfconcave

i (t′, Dj,k
i )
]

8 else sj,ki (t)← (yj,k
′

i (t′)− Eki )/(Dj,k′

i − t′)
9 return S

10 � S is the matrix that stores all slopes sj,ki (t).

Figure 5 This algorithm calculates all slopes given all frame deadlines.

In The LP-based Algorithm for GMF-PA Tasks (Figure 4), we initialize frame deadlines by
proportional deadline assignment (PDA [15]) to Dk

i = (Eki /Ei) · Pi. Given the deadline
matrix D which stores all Dk

i , we calculate all slopes and store them in matrix S. We
replace Line 6 of Figure 2 with Equation 12 to transform the algorithm into a LP algorithm
Heuristic-LP (D,S) (Line 5 of Figure 4). The slope element sj,ki (t) of S, which corresponds
to yj,ki (t), is calculated in the algorithm shown in Figure 5 and all lines pass the point
(t′, Eki ). The linear functions are illustrated by the red lines in Figures 6-8. If the deadline
Dj,k′

i (generated from the previous iteration) is smaller than t′ = t− b tPi
c · Pi, we calculate

the demand yj,k
′

i (t′) of the concave function at Dj,k′

i . The slope of the line is calculated
by two points (Dj,k′

i , yj,k
′

i (t′)) and (t′, Eki ) illustrated in Figure 6. If the deadline Dj,k′

i

equals t′, we calculate the slope by taking the tangent of the concave function at the point
(t′, Eki ) shown in Figure 7. If the deadline is larger than t′, we use two points (t′, Eki ) and(

1
µ · ln(1 + 1

δ ) + t′, 0
)
, which is the cross point of the x-axis and the concave function, to

calculate the slope, and the line with the slope is shown in Figure 8. The slope matrix S is
adjusted in each iteration of the loop in Figure 4.

Dj,k
i

Demand

(t′, Eki )
(t′, 0)Dj,k′

i

Figure 6 The frame deadline
Dj,k′

i of the last iteration is smal-
ler than t′ in this case.

Dj,k
i

Demand

(t′, Eki )

(Dj,k′

i , 0)

Figure 7 The frame deadline
Dj,k′

i of the last iteration equals
t′ in this case.

Dj,k
i

Demand

(t′, Eki )
(t′, 0) Dj,k′

i

Figure 8 The frame deadline
Dj,k′

i of the last iteration is lar-
ger than t′ in this case.

The loop in Figure 4 will not stop recursively calling function Heuristic-LP (D,S) until
the difference of the L values in two consecutive iterations is smaller than the positive threshold
ε. Llast and Lcur represent the L values of the last and current iterations, respectively. The
Heuristic-LP -fixedDeadline(D,S) algorithm (Line 8 of Figure 4) uses the integer deadlines
to maintain sufficiency for schedulability, which is proved in Theorem 11. We first round up
frame deadlines to be integers. For each task, we keep reducing the largest frame deadline by
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one until the summation of them equals to its task deadline/period. We assign the deadline
variables to the integer values in Line 7 of Figure 4 and the other parts are the same as in
the Heuristic-LP (D,S) algorithm. The system is schedulable if L ≤ 1.

We prove in Theorem 10 that the while loop of the algorithm The LP-based Algorithm
for GMF-PA Tasks function stops after a finite number of iterations. The sufficiency of the
LP-based algorithm for schedulability is proved in Theorem 11.

I Theorem 10. The while loop of the function The LP-based Algorithm for GMF-PA Tasks
stops in a finite number of iterations.

Proof. We first prove that L decreases from one iteration to the next. Before each iteration
of the algorithm Heuristic-LP (D,S), we use the deadline assignment D′ from the last
iteration to calculate the slopes S of frame functions in the current iteration. Let Llast be
the value of L in the last iteration. In the current iteration, let us assume that we use the
same set of the deadlines D′ to calculated the value Lcur.

In the first and third cases shown in Figures 6 and 8, the frame demand is either smaller
(if the last iteration is the first iteration) or equal to the one in the last iteration. In the
second case, the frame demand is the same as the one in the last iteration. From all cases,
we know that the same set of deadlines causes Lcur ≤ Llast. Since we minimize L in the
algorithm, the returned deadlines by the algorithm Heuristic-LP (D,S) must generate a
value of L that is smaller than Lcur. Thus, we have proved that L decreases from one
iteration to the next. We also set a threshold to be the difference of the L values in two
consecutive iterations, and we know that the lower bound of L equals

∑n
i=1 Ui. In either

cases, the loop of the function The LP-based Algorithm for GMF-PA Tasks stops in a finite
number of iterations. J

I Theorem 11. The LP-based algorithm is a sufficient schedulability test when L ≤ 1.

Proof. This proof is similar to Theorem 2. The sufficiency of any approximation/heuristic
algorithm (w.r.t. the MILP algorithm) for schedulability requires two conditions: 1) the
demand of the algorithm over any t-length interval is larger than the one in the MILP. 2)
frame parameters must take integer values. The first condition ensures that the demand over
approximates on any t, and the second condition ensures that the demand only changes at
integer values. We require the second condition since all lengths (represented by t) can only be
integers in the MILP algorithm. The LP-based algorithm over approximates system demand
among all t, and the algorithm adjusts frame deadlines to be integers in the last iteration. J

7.2 The Application of the LP-Based Algorithm to One-Suspension
Self-Suspending Tasks

The LP-based scheme can be applied to multiple-segment self-suspending tasks directly. In
this section, we further optimize the algorithm for one-suspension self-suspending tasks by
reducing the number of free variables and equations. Given that n is the number of tasks
and H is the maximum interval length, the algorithm uses 8 · n ·H + n fewer variables and
15 · n ·H + n fewer number of constraints than the ones in the standard LP-based scheme.

For each task τi, we use variables D1
i and Pi − Si −D1

i (instead of D1
i and D2

i ) to denote
frame deadlines to reduce the number of variables and constraints. Si is the suspension
length of task τi. In this case, the demand bound function only relies on D1

i and t and
~Fi = [D1

i , D
1
i ,Pi − Si −D1

i ,Pi − Si −D1
i ] since we let P ki = Dk

i . A task demand falls in four
cases which are shown and proved in Theorem 12.
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I Theorem 12. The demand bound function of a task τi lies in one of the following four cases:

dbfi(t, ~Fi) =



dbf1
i (t, ~Fi) =


E1
i , 0 < D1

i ≤ t
0, t < D1

i < Pi − Si − t
E2
i , Pi − Si − t < D1

i ≤ Pi − Si
when 0 < t < (Pi − Si)/2

dbf2
i (t, ~Fi) =


E1
i , 0 < D1

i < Pi − Si − t
max {E1

i , E
2
i }, Pi − Si − t ≤ D1

i ≤ t
E2
i , t < D1

i < Pi − Si
when (Pi − Si)/2 ≤ t < Pi − Si

dbf3
i (t, ~Fi) = E1

i + E2
i ,

when Pi − Si ≤ t ≤ Pi
dbf4

i (t, ~Fi) = b tPi
c · (E1

i + E2
i ) + dbfi(t− b tPi

c · Pi, D1
i ),

when t > Pi

(13)

Proof. Figures 9-10 show an example of the staircase demand of dbf1
i (t, ~Fi) and dbf2

i (t, ~Fi)
with black solid lines, respectively. Roughly, the two staircase/concave demand curves head
toward each other when t increases. The first two cases differ when the two staircase functions
meet as t increases. The demand dbf3

i (t, ~Fi) considers the total task demand and dbf4
i (t, ~Fi)

iterates over the first three cases.
For the demand dbf1

i (t, ~Fi) in the first case, when 0 < t < (Pi − Si)/2, we know that
t < Pi − Si − t by simple mathematical transformation. In this case, we have two separate
staircase functions as shown in Figure 9. When D1

i ≤ t, the demand of the first frame is E1
i ,

the demand of the second frame is zero because D1
i ≤ t < Pi − Si − t. D1

i < Pi − Si − t
means t < Pi − Si −D1

i which indicates the deadline of the second frame is larger than t.
Thus, dbf1

i (t, ~Fi) = E1
i when D1

i ≤ t. When t < D1
i < Pi − Si − t, dbf1

i (t, ~Fi) = 0 because
t < D1

i and t < Pi − Si −D1
i . When D1

i ≥ Pi − Si − t, i.e., t ≥ Pi − Si −D1
i , the demand

dbf1
i (t, ~Fi) equals E2

i . Thus, we have proved that the demand of task τi is this case when
0 < t < (Pi − Si)/2.

For the demand dbf2
i (t, ~Fi), the proof is similar to the one of the demand dbf1

i (t, ~Fi).
We know Pi − Si − t ≤ t since (Pi − Si)/2 ≤ t. By comparing the deadline and length t,
dbf2

i (t, ~Fi) = E1
i when 0 < D1

i < Pi − Si − t and dbf2
i (t, ~Fi) = E2

i when t < D1
i < Pi − Si.

When Pi − Si ≤ t ≤ Pi, we know that either frame can contribute to the demand. However,
the two frames cannot contribute together since t < Pi − Si. In other words, the interval
length t cannot fit both frames. Thus, we take the maximum execution of the two frames as
the demand when Pi − Si ≤ t ≤ Pi.

It is trivial to see that dbf3
i (t, ~Fi) = E1

i +E2
i when Pi − Si ≤ t ≤ Pi, and the fourth case

iterates over the first three cases. In all, we have proved this theorem. J

The LP-based algorithm for one-suspension tasks is based on approximating the exact
demand in Theorem 12 and the algorithm The LP-based Algorithm for GMF-PA Tasks in
Figure 4. We replace Lines 6-8 in the MILP algorithm with the linear functions shown
in Equation 16 to get the LP algorithm Heuristic-LP (D,S) in Line 5 of Figure 4. The
linear functions shown in Equations 14-15 are to approximate the two concave portions of
the task demand for dbf1

i (t, ~Fi) and dbf2
i (t, ~Fi), respectively, illustrated by the red dotted

lines in Figures 9-10.
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D1
i

dbf1
i (t, ~Fi)

(0, E1
i ) (t, E1

i )

(t, 0)

(Pi − Si − t, E2
i )

(Pi − Si − t, 0)(D1′
i , 0)

Figure 9 The black solid line shows the demand dbf1
i (t, ~Fi), the blue dashed line shows its concave

approximation, and the red dotted line shows its linear function when the deadline D1′
i of the last

iteration lies between (t, 0) and (Pi − Si − t, 0).

D1
i

dbf2
i (t, ~Fi)

(0, E1
i )

(t, 0)

(Pi − Si − t, E2
i )

(Pi − Si − t, 0)

Figure 10 Similar to Figure 9, the dashed and dotted lines show the concave and linear functions
of the demand dbf2

i (t, ~Fi), shown with the solid line, respectively. The black dotted line shows the
frame-wise demand.

dbf1,lineari (t, ~Fi) =



max

{
dbflinear

i (t,D1
i )

dbflinear
i (t,Pi − Si −D1

i )
when 0 < D1′

i ≤ t

max


0−E1

i

D1′
i
−t′
· (D1

i − t) + E1
i

0−E2
i

D1′
i
−(Pi−Si−t′)

· (D1
i − (Pi − Si − t)) + E2

i

0
when t < D1′

i < Pi − Si − t

max

{
dbflinear

i (t,D1
i )

dbflinear
i (t,Pi − Si −D1

i )
when Pi − Si − t ≤ D1′

i < Pi − Si

(14)

dbf2,lineari (t, ~Fi) =



max

{
dbflinear

i (t,D1
i )

E2
i

when E1
i ≥ E2

i

max

{
dbflinear

i (t,Pi − Si −D1
i )

E1
i

when E1
i < E2

i

(15)
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dbf lineari (t, ~Fi) =



dbf1,linear
i (t, ~Fi) when 0 < t < (Pi − Si)/2

dbf2,linear
i (t, ~Fi) when (Pi − Si)/2 ≤ t < Pi − Si

dbf3,linear
i (t, ~Fi) = E1

i + E2
i ,

when Pi − Si ≤ t ≤ Pi
dbf4,linear

i (t, ~Fi) = b tPi
c · (E1

i + E2
i ) + dbfi(t− b tPi

c · Pi, D1
i ),

when t > Pi

(16)

The approximation demand dbf lineari (t, ~Fi) is calculated based on the t-length interval.
Equation 14 shows that the task demand is approximated when 0 < t < (Pi−Si)/2. This case
is illustrated by the red dashed lines shown in Figure 9. The functions are also based on the
LP-based iterative process and the initial deadline D1

i is assigned by PDA (Pi − Si) · E1
i

E1
i
+E2

i
.

The slope of the linear function depends on the frame deadline D1′
i from the last iteration.

If the deadline D1′
i lies in the region (t,Pi − Si − t), we use the two red dotted lines shown

in Figure 9 to approximate the staircase demand. The first line passes the points (t, E1
i ) and

(D1′
i , 0), and the second line passes the points (D1′

i , 0) and (Pi−Si− t, E2
i ). When the frame

deadline D1′
i lies in the region (0, t] or [Pi − Si − t,Pi − Si), we reuse the linear function

dbf lineari (t,D1
i ) shown in Equation 12 to calculate the slopes.

Equation 15 shows the task demand when (Pi−Si)/2 ≤ t < Pi−Si, the demand functions
differ by the values of E1

i and E2
i . In the case of the demand dbf2

i (t, ~Fi), the first line equals
min

{
E1
i , E

2
i

}
, and the second line uses the previous method computeSlope(D) to adjust the

slope of the linear function as shown in Figure 10. Figure 10 shows the approximate lines
when E1

i < E2
i , and the case is similar when E1

i ≥ E2
i . When t ≥ Pi − Si, the demand

dbf3,linear
i (t, ~Fi) and dbf4,linear

i (t, ~Fi) are identical to dbf3
i (t, ~Fi) and dbf4

i (t, ~Fi) of Equation 13,
respectively. Thus, we have created the LP-based algorithm for one-suspension tasks.

8 Experiments

We implement our LP-based algorithms using the commercial solver GUROBI [17] in
MATLAB on a 2 GHz Intel Core i5 processor and 8 GB memory machine. We compare
our LP-based algorithm with the MILP algorithm [18] and its application to self-suspending
tasks [9, 14] on uniprocessor systems. The algorithm LP-δ is the LP-based schedulability
test given the maximum error δ of the concave programming algorithm. The algorithm
niter-LP-δ limits the number of iterations to be niter. Note that we set δ = 0.1, as the
constant µ = 1

δ · ln
(
1 + 1

δ

)
(e.g. the exponential constants in Equation 2) will be out of

range if δ is too small.
The MILP algorithm is introduced in Section 5. The algorithm EDA (equal deadline

assignment [9, 3]) assigns each frame the same deadline (Dk
i = (Pi −

∑Ni−1
i=0 Ski )/Ni), and

the algorithm PDA [15, 3] assigns frame deadlines proportional to frame execution time
(Dk

i = (Pi −
∑Ni−1
i=0 Ski ) · Eki /Ei). Note that we use the schedulability test in the GMF

model [3] with the EDA and PDA deadline assignment, since the upper bound of the
maximum interval length is bounded [3]. The details of application from GMF-PA to self-
suspending tasks can be found in a previous paper [18]. Comparative results on tasks with
one suspension and multiple suspensions are shown in Section 8.1 and 8.2, respectively.

8.1 The Experiments for One-Suspension Self-Suspending Tasks
For one-suspension self-suspending tasks, we compare schedulability ratio and total running
time among the algorithms in Figures 11a and 11b, respectively. Since the MILP algorithm
does not scale well with an increasing number of tasks (Figure 12) and task periods, we
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test multiple-suspension self-suspending tasks in Figures 14a and 15a without the MILP
algorithm. The schedulability ratio is the number of feasible systems over the total systems.
The total running time consists of matrix building time and solver running time.

In the task systems, task periods Pi are randomly generated in the range [Plow, Phigh].
Plow and Phigh are the low and high bounds of the task periods. The UUniFast algorithm [5]
divides the utilizations Ui of n tasks under system utilization Ucap. The total execution time is
Ei = Pi ·Ui, and the suspension delay is generated from [Slow ·(1−Ui) ·Pi, Shigh ·(1−Ui) ·Pi].
Slow and Shigh in suspension range [Slow, Shigh] are the low and high suspension index
bounds, respectively. The UUniFast algorithm also divides the total execution time into
frame execution times. ε represents the threshold in the LP-based algorithm shown in Figure 4
and is set to be 0.01. Since all algorithms perform well under small system utilization Ucap,
we focus on the experiments whose system utilization Ucap ≥ 0.5.
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(a) The schedulability ratio of the algorithms at
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Figure 11 The comparison of our LP-based algorithm with the MILP and other polynomial-time
algorithms on schedulability ratio and average running time.

In Figures 11a and 11b, the x-axes represent the system utilization Ucap ∈ [0.5, 0.9] with a
step size of 0.05. Each task system contains five tasks. The task configuration parameters are
Plow = 10, Phigh = 100, Slow = 0.3, and Shigh = 0.6. The y-axes represent the schedulability
ratio and total running time in Figures 11a and 11b, respectively. The data are the average
numbers of 500 runs on each Ucap. Figure 11a shows that our LP-δ is better than PDA
and EDA algorithms in terms of schedulability ratio. The iteration numbers of all tested
LP-δ algorithm are smaller than five. The multiple runs of the LP algorithm make the LP-δ
algorithm take slightly longer than the MILP algorithm shown in Figure 11b. The MILP can
be relatively efficient for small enough task systems; however, as the number of tasks/frames
increases, the MILP running time increases exponentially. Note that in Figure 11, we focus
on a small system where we can gauge the effectiveness of the LP in comparison with the
MILP and other algorithms. With Ucap = 0.5, Figure 12 shows that the execution time of
the MILP algorithm increases dramatically when the number of tasks increases. Multiple
input dimensions affect the execution time of the MILP algorithm, e.g., the task periods.
Task periods directly affect the number of integer variables of the MILP algorithm and the
running time is longer with higher task periods even when the number of tasks in the system
is small. The running time of the LP-based algorithm scales relatively well.

Since we use the concave programming algorithm to guide the LP-based algorithm and
have not proved a speed-up factor for the LP-based algorithm, we perform experiments
on L value and maximum error (

√
L/LMILP − 1 by the transformation of Theorem 9). L

shows how close the value of the heuristic algorithm is to the MILP algorithm. L indicates
the minimization of the maximum demands over all tested intervals. E.g., assume there
exist two heuristic algorithms that generate L = 0.2 and 0.9, respectively. Both algorithms
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Figure 12 The average running time of the algorithms as the number of tasks increases.

will give successful schedules in the schedulability ratio test, but the one with L = 0.2 is a
tighter schedule compared to the other one. If L > 1, the system is not schedulable. We also
compare the maximum error of the LP-δ algorithm since the error can be larger than δ.

Figure 13a shows the average L value of the algorithms among all system utilization points.
The LP-0.1 algorithm returns the closest values to the MILP algorithm. The maximum error
values shown in Figure 13b take the maximum values among 500 runs in each utilization
point. Our LP-based algorithm returns the smallest error across all algorithms.
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Figure 13 The quality of the LP-based algorithm on the L value and the maximum system error.

8.2 The Experiments for Multiple-Suspension Self-Suspending Tasks
Among the shown experiments on self-suspending tasks with one suspension frame, the
average number of iterations of the LP-based algorithm is smaller than five among all system
utilization Ucap. Since we believe that the algorithms can approach local optimal with a small
number of iterations, we fix the number of iterations to five and test on multiple-suspending
tasks. In Figures 14 and 15, the data for each system utilization point is based on 100
runs. Each run of the system contains 30 tasks and each task contains six execution frames
separated by five suspending frames (11 frames in total). Plow = 10 and Phigh = 100. Since
the MILP-based approach in this setting takes much longer than the LP-based algorithm,
we do not include the MILP-based approach in this experiment. The MILP-based approach
takes more than 1.5 ∗ 103 (respectively, 3.0 ∗ 103) seconds with optimality gap (the gap
between the lower and upper objective bounds) which is larger than 10% (respectively, 5%).

In Figure 14a, the system utilization Ucap ∈ [0.8, 0.96] with step size of 0.02 is shown
on the x-axis. Figure 14a has the suspension range with Slow = 0.1 and Shigh = 0.3. In
Figure 15a, the system utilization Ucap ∈ [0.5, 0.9] with a step size of 0.05 is shown on the
x-axis. Figure 15a has the suspension range with Slow = 0.3 and Shigh = 0.6. Figures 14a
and 15a show that our LP-δ is the best among all polynomial-time algorithms in terms of
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(b) The average running time of the algorithms
at system utilization [0.8, 0.96].

Figure 14 Comparison of our LP-based algorithm with other polynomial-time algorithms on the
schedulability ratio and average running time.

schedulability ratio. The running times in Figures 14b and 14b reveal that LP-δ also scales
well. The improvements for low suspension range [0.1, 0.3] are better than the one with long
range [0.3, 0.6]. The reason is that when the system specification has more slack time (small
frame execution time and short suspending length), the LP-based algorithms can be “trained”
to get near optimal parameters during the five iterations. In other words, e.g., the frames
deadlines will be equal to their corresponding execution times if there are no slacks for all
tasks, and all algorithms will return identical frame deadlines.
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Figure 15 The comparison of our LP-based algorithm with other polynomial-time algorithms on
schedulability ratio and average running time.

Our LP-based algorithm always yields higher schedulability ratio compared to other
polynomial-time algorithms. The average running time is competitive overall even when
compared with non-mathematical-programming based algorithms such as EDA/PDA.

9 Conclusions

In this paper, we propose a concave programming approximation algorithm and prove its
speed-up factor (can approach one) compared to the optimal MILP algorithm. Under the
guidance of the tunable small speed-up factor, we present the general LP-based scheme
to schedule GMF-PA tasks. We further optimize the LP-based algorithm and apply it to
schedule one-suspension tasks. Extensive experiments show that our algorithms improve the
schedulability ratio and have competitive running time compared to the previous results.
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