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Abstract—Characterizing computational demand of Cyber-
Physical Systems (CPS) is critical for guaranteeing that multiple
hard real-time tasks may be scheduled on shared resources
without missing deadlines. In a CPS involving repetition such
as industrial automation systems found in chemical process
control or robotic manufacturing, sensors and actuators used
as part of the industrial process may be conditionally enabled
(and disabled) as a sequence of repeated steps is executed. In
robotic manufacturing, for example, these steps may be the
movement of a robotic arm through some trajectories followed
by activation of end-effector sensors and actuators at the end
of each completed motion. The conditional enabling of sensors
and actuators produces a sequence of Monotonically Ascending
Execution times (MAE) with lower WCET when the sensors are
disabled and higher WCET when enabled. Since these systems
may have several predefined steps to follow before repeating the
entire sequence each unique step may result in several consecutive
sequences of MAE. The repetition of these unique sequences
of MAE result in a repeating WCET sequence. In the absence
of an efficient demand characterization technique for repeating
WCET sequences composed of subsequences with monotonically
increasing execution time, this work proposes a new task model to
describe the behavior of real-world systems which generate large
repeating WCET sequences with subsequences of monotonically
increasing execution times. In comparison to the most applicable
current model, the Generalized Multiframe model (GMF), an
empirically and theoretically faster method for characterizing the
demand is provided. The demand characterization algorithm is
evaluated through a case study of a robotic arm and simulation of
10,000 randomly generated tasks where, on average, the proposed
approach is 231 and 179 times faster than the state-of-the-art in
the case study and simulation respectively.

Index Terms—real-time systems, control systems, cyber-
physical systems

I. INTRODUCTION

Characterizing computational demand of Cyber-Physical
Systems (CPSs) is critical for guaranteeing multiple hard real-
time tasks may be scheduled on a shared processor without
missing deadlines. Demand characterization using Demand
Bound Functions (DBFs) is important as it bounds the max-
imum demand a particular task may place on a processor
and is commonly used in real-time systems [9], [18], [23].
Precise demand characterization also helps avoid overprovi-
sioning of processing resources as pessimistic characterization
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can cause designers to use more processors, higher power
processors, or both - resulting in an unnecessary increase in
the size, weight, and power of computing systems. In modern
manufacturing, robotic systems are used to execute repeated
motions to process parts. The end effectors of these systems
are typically interchangeable tools such a deburrers, drills,
welders, grinders, or other manipulators used to process parts
being manufactured [12], [22].

When using a particular end effector, the controller respon-
sible for motion and operation enables the tool as necessary.
Consider, for example, a robot like the one depicted in Figure
1a required to move in a pattern shown in Figure 1b. Suppose
that upon arrival to the desired locations shown in Figure 1b,
the end effector is activated. Since the end effector is enabled
as needed, the sensors and actuators of the end effector are not
always in use. Thus, the real-time workload associated with
sensor sampling, fusion, and control of end-effector actuators
is only present during some of the repeated trajectories the
robot moves through. The real-time task controlling the robot
and its end effector would show a predictably variable se-
quence of WCETs where lower WCET would be expected
without end-effector sensors and actuators enabled but higher
WCET expected when in motion and enabling the end effector.
This pattern would manifest as a sequence of Monotonically
Ascending Execution times (MAE). Moreover, since the MAE
sequence would repeat for each unique movement of the robot
to a new location where the end effector will be enabled
before repeating entirely, several MAE sequences would be
concatenated to form a repeating WCET sequence. Figure 2
shows an example repeating WCET sequence composed of
two subsequences with Monotonically Ascending Execution
times. The repeating WCET sequence repeats at time t = 16.
Over the intervals [0, 6] and [6, 16] the WCET of jobs is mono-
tonically increasing. In practice, the solid jobs may represent
the constant workload of a robotic arm such as the use of
accelerometers and gyroscopes to locate the arm in space.
The striped jobs would represent the conditionally-enabled
workload of the end effector. For deburring end effector, the
striped jobs may represent increased workload from encoders
and torque sensors regulating speed and force [16].

Research Need: The most applicable demand characteriza-
tion for systems that demonstrate a repeating WCET sequence



(a) An example robot arm with a
pneumatic-powered gripper as an
end effector.

(b) An example motion pattern for
a robot arm which rotates to three
positions before repeating.

Fig. 1. A robot arm and an example motion pattern.

Fig. 2. A repeating WCET sequence composed of two subsequences of MAEs

is the Generalized Multiframe (GMF) model by Baruah et al.
[3]. Extending upon the Multiframe model of Mok and Chen
[20], the GMF approach provides a Demand Bound Function
(DBF) for tasks with a repeating sequence of execution times,
such as the robot arm with a conditionally-enabled end effector
described above. The DBF is a fundamental tool in real-time
systems which describes the maximum demand a set of tasks
may place on a processor in a given time interval. While
the GMF DBF algorithm in Baruah et al. [3] is an exact
characterization of demand, it is designed for arbitrary patterns
of frame execution times and thus computationally expensive
for systems that exhibit patterns such as repeatable WCET
sequences composed of MAE. This computational expense can
restrict offline control synthesis and make online schedulability
analysis difficult. For example, in the hardware-software co-
design process, where physical systems, control laws, and real-
time systems are modeled and simulated together, schedulabil-
ity analysis is performed on many different system implemen-
tations. Furthermore, for control systems tasked with creating
new trajectories or using new end effectors after deployment
(i.e. new motion paths for new parts or retooling for new
manufacturing processes), the latency required to reassess
schedulability online using the GMF approach is impractical.
Restricted to the current computationally expensive approach,
designers have the choice of either computing every possible
change to the sequence of setpoints offline or using a fast,
inexact approach (such as assuming every job executes at the
highest WCET) to reassess schedulability online. Thus, any
improvements in schedulability runtime make offline synthesis
and online recharacterization more practical.

Approach: In the absence of an efficient and exact demand
characterization technique for repeating WCET sequence with
Monotonically Ascending Execution, this work proposes a task
model and DBF calculation for a special case of the GMF task
model in which repeated monotonic ascension of execution

times are exploited. In the proposed approach, the repeating
WCET sequence is modeled as a series of repeating MAE
sequences. A user-defined function, called a driving function,
is used to represent the change in WCET over time. In practice,
such as in Figure 1b, this driving function may represent
tracking error over time of an asymptotically stable control
system. Properties of the driving function, its relationship with
WCET, and the monotonically ascending subsequences of the
repeating WCET sequence are used to limit the number of
intervals that must be searched to obtain an upper bound on
the demand of the repeating WCET sequence task. The main
contributions of this work are:

1) a new method of modeling real-time workloads as
repeating sequences of WCET derived from a generic
function definition,

2) an exact DBF calculation for the model - theoretically
and empirically faster than the GMF approach,

3) a case study of a robotic arm implementation that
exhibits the repeating WCET described, and

4) a simulation of 10,000 randomly generated tasks where,
on average, the proposed approach is 179 times faster
than the GMF approach.

This work is one of several along a pathway exploiting
physical system dynamics (in this case, through control laws)
to reduce demand characterization computation time. This
work aims to demonstrate that known system dynamics may be
leveraged for improving the efficiency of analysis. Our longer
term vision is to use the insights into control-based demand
characterization from this work and apply it to increasingly
complicated control models to improve the efficiency and
efficacy of CPS.

II. RELATED WORK

Existing real-time works address scheduling in the context
of control systems by focusing on adapting periods or WCET
[8], [19]. Works like Branickey et al. [7], Baruah et al. [2], and
Yoshimoto and Ushio [25] address the possibility of skipping
jobs while maintaining stability. These approaches do not offer
a precise bounding function for changing WCET, however, and
cannot directly be applied to exploiting predictably repeating
variations in WCET.

Real-time models which address variation in WCET as a
function of the environment include works like Chen et al. [10]
and Lee et al. [17] in which Dynamic Voltage and Frequency
Scaling (DVFS) is adapted as a function of known workload
or thermal constraints. Others like Biondi and Buttazzo [6]
and Kim et al. [15] base task period and WCET on the speed
of an internal combustion engine. These works all alter task
parameters as a function of some changing system dynamic
and provide methods for modeling the demand generated by
systems with adaptive WCET. These works, however, do not
define a predictably repeating variation in the sequence of
WCETs that could be produced and therefore do not apply
to the repeating WCET sequence.

In terms of real-time analysis models, the approach most
applicable to analyzing a repeating WCET sequence is the
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Generalized Multiframe (GMF) model. The Multiframe task
model by Mok and Chen describes tasks with WCETs that
repeat in a cycle throughout system operation [20]. The GMF
task model by Baruah et al. further extends on Mok and
Chen by allowing deadlines of frames to differ and varying
minimum interarrival times [3]. These models provide an exact
DBF when applied to repeating WCET sequence problem.
However, the time required to compute the DBF using the
GMF model for repeating WCET sequence problem is sig-
nificantly longer and, as will be shown, can be improved by
leveraging properties repeating WCET sequence, namely the
monotonicity of the MAE subsequences.

III. SYSTEM MODEL

In the GMF task model, a sequence of frames with WCETs
are explicitly defined. The GMF DBF algorithm is then used
to characterize the maximum demand the sequence of frames
may generate over any interval. In this work, we provide a
task model that is a special case of the GMF model in which
the sequence of frames is generated by: a driving function
representing how WCET changes in time, a super schedule
which represents how the driving function and its sequence
of initial values reset in time to simulate unique motions, and
an explicit mapping of the driving function to WCET. In the
model that follows, the driving function, super schedule, and
the mapping of driving function to WCET will be used to
generate a sequence of jobs, individual units of computation,
whose WCET varies in time. This section describes each of
these components and concludes with the proposed task model.

A. The Driving Function

For this model, the driving function is a generic, user-
defined function that serves as the basis for WCET values
in time. The driving function is given by:

f(t) : R+
0 7→ R+

0 | f(t) > f(t+ ε) ∀ ε > 0 (1)

where t represents the function input which increases with
respect to time from some initial value of t. Although f(t)
may be any decreasing function which maps to nonnegative
reals, practically f(t) may represent the decrease in error
over time of an asymptotically stable control system. In the
robot example given in the introduction, this function could
be derived from the control law responsible for driving the
arm and end effector towards the sequence of target locations.
Since the motivation behind this work is repeating trajectories
of motion, the driving function is accompanied by a super
schedule to describe repetition.

B. Super Schedule

To define the repetition of the driving function values, we
define a super schedule, S, as 3-tuple:

S = {R,S, P}, (2)

where R is the reset sequence, S is the starting value sequence,
and P is the super period. Figure 3 illustrates a sequence of
reset times and starting values along with a super period.
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Fig. 3. An Example Super Schedule vs Time. S = {R = {0, 3.0, 5.0},S =
{1.5, 0, 1}}, P = 9.0} are the parameters used to construct this graph. Along
y = 0, the black dots indicate job release times. The starting values and reset
times repeat after the super period P = 9.0.

The following equations provide formal definitions of the
sequences above. The reset sequence R is a sequence of reset
times from system start when the starting values of S are used
as initial values for f(t):

R = {r0, r1, ..., rn} | ri ∈ R+
0 , ri < ri+1, ∀ i < n (3)

where n is the number of elements in the sequence and rn =
P . Here, P , the super period, is the time at which the sequence
of reset values and starting values restarts from r0 and s0
respectively. This restart can be seen in Figure 3 at time t = 9.
The starting value sequence S is defined as:

S = {s0, s1, ..., sn−1} | si + (ri+1 − ri) ≥ s(i+1) mod n

∀i ≤ n− 1, si ∈ R+
0 (4)

where si is the initial value given as input to f(t) at time
ri. Specifically, at time t = ri, f(si) is the output of the
driving function. The constraint si+(ri+1−ri) ≥ s(i+1) mod n

requires that starting values provided at reset times only cause
f(t) to increase in value. Since f(t) is a strictly decreasing
function, si + (ri+1 − ri) ≥ s(i+1) mod n =⇒ f(si +
(ri+1− ri)) ≤ f(s(i+1) mod n). Informally, the reset sequence
identifies when, in time, the driving function will be ”reset”
to some initial value from which it decays. Practically, a reset
sequence may be determined by the set of unique setpoints
a robot must drive its end effector towards. The starting
value sequence represents the initial value from which the
function decays. In practice, these starting values may be
derived from the known distance the manipulator must cover
before the end effector would be enabled. In examples like the
robotic arm and other activities that include motion planning,
trajectories are provided to controllers as repeating sequences
typically for manufacturing or other automated, high-repetition
activities [13], [14], [21]. Although the basis for these terms
may be rooted in control, there is no implicit requirements
for generating the repeating WCET sequence outside of the
equation definitions above.

C. Starting Value Index

Since the starting values, S, are used as input to the driving
function, f(t), an index function is needed to identify the
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current starting value. The Starting Value Index, defined below,
identifies which starting value, si, is used at any given time t.

Definition 1 (Starting Value Index): Let rn = P . At time t
the Starting Value Index (svi(t)) is:

svi(t) = {i if (0 ≤ i < n− 1)∧ (ri ≤ t mod P < ri+1) (5)

This index determines which two consecutive reset times, ri
and r(i+1) mod (n+1), the provided time t is between. Note that
this function is discontinuous ∀ t | t mod P ∈ R.

Since the driving function ”resets” at each reset time, the
instantaneous value of the driving function at any time is not
strictly a function of f(t).

D. Instantaneous Driving Function Values

To determine the driving function value at any t, a function
for modeling the time since the last reset is needed. To model
the time since the last reset, let us define a function which
increases linearly from zero at and after any reset time.

Property 1 (Time Since Reset): At time t, the time from the
last reset is:

T (t) = t− rsvi(t) − P ·
⌊
t

P

⌋
(6)

Note this function, based on Equation 5, is discontinuous at
any time t | t mod P ∈ R.

The time since last reset function, Equation 6, may now
be incorporated into the instantaneous driving function. The
instantaneous driving function represents the output of the
driving function f(x) resetting at each reset time, r ∈ R.

Property 2 (Instantaneous Driving Function): At time t,
the instantaneous value of the driving function, incorporating
resets and starting values, is given by:

F (t) = f(ssvi(t) + T (t)) (7)

where svi(t) is the index of the starting value at time t, ssvi(t)
is the starting value itself, and T (t) is the time since last reset.
This function gives the instantaneous value of the driving
function at any time t while incorporating the reset times and
initial values. The output of the instantaneous driving function
may now be used as the basis for generating WCET values.

To represent the changing WCET resulting from
conditionally-enabled end-effector sensors and actuators,
we now define the sensor boundaries and WCET functions.

1) Sensor Boundaries: As previously mentioned, sensors
and actuators for an end effector may only be enabled as
necessary. For this work, enabling of sensors and actuators
will be based on the value of the driving function, f(t). The
values of f(t) at which different WCETs are used are called
boundaries. The relationship between the driving function,
WCET, and sensor boundaries is given by:

W = (C,B), (8)

where C is the set of WCETs for the conditionally-enabled
sensors and B is the set of boundaries.

Specifically, the WCET set C is defined as:

C = {c0, c1, ..., cm−1} | ci ∈ R+
>0, ci > ci+1, ∀i ≤ m− 1,

(9)
where ci represents the WCET of the task for values of f(t)
between boundaries bi and bi+1 and m is the number of unique
WCETs. Note that all sets described in the remainder of the
work will begin with subscript zero.

The sensor boundary set B is defined as:

B = {b0, b1, b2, ..., bm} | bi ∈ R+
0 , bi < bi+1, ∀ i ≤ m, (10)

where bi represents the value of the driving function below
which WCET ci−1 is used. Whenever f(t) ≤ bi the sensor(s)
or actuator(s) with WCET ci−1 is executed. Additionally,
b0 = 0 which is the minimum for any boundary set. Note
that there is one more boundary than unique WCET as the
boundaries are the beginning and ends of the ranges. In
practice, conditionally-enabled sensors may contribute addi-
tional WCET by requiring the sensor data to be sampled,
filtered, and compared with other data. Any additional sensor
fusion computation, such as fault detection routines, would
also increase task WCET when a sensors is enabled. The
boundaries for these sensors may be based on system tracking
error - only enabling sensors, and thus increasing WCET, when
system error is low.

Together, the above equations may be combined into a
left continuous piecewise function describing the WCET as
a function of the driving function:

C(f(t)) = {ci−1 if (bi−1 < f(t) ≤ bi), i ∈ N, i ≤ m. (11)

Fig. 4. WCET vs. driving function, f(t), with WCET boundaries, bi. The
x-axis shows boundary values of B. The y-axis shows WCET values of C.

Fig. 4 illustrates the piecewise function in Equation 11. This
inverse relationship between the driving function and WCET
is similar to the relationship between period and WCET as
presented in the Adaptive Variable Rate model by Biondi and
Buttazzo [6] and the Rhythmic Task Model by Kim et al. [15].
F (t) may now replace f(t) in Equation 11 to give the se-

quence of WCETs over time. Since F (t) is strictly decreasing
except at times t ∈ R, the final property is now established.

E. Nondecreasing WCET in Time

Given the properties defined above, a final property of
nondecreasing WCET in time between consecutive reset times
is established. The nondecreasing nature of WCET over time
will be exploited in the worst-case demand (WCD) calculation.
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Fig. 5. An Example Repeating WCET Sequence with Monotonically As-
cending Execution. The driving function f(t) = 2−t combined with period
p = 1, reset times R = {0, 3.0, 5.0, 9.0}, super period P = 9, and
starting values S = {1.5, 0, 1} is used as input to the instantaneous driving
function F (t) = f(ssvi(t) + T (t)). The instantaneous driving function is
then used as input to the WCET function given by B = {0.0, 0.1, 0.2, 1.0}
and C = {0.8, 0.4, 0.2}. At time t = 0, the system is given the starting
value s0 = 1.5 shown above. As F (t) decreases, the WCET of job releases
increases according to Equation 11. Along y = 0, the black dots indicate job
release times. Note the schedule repeats every P = 9 time units.

Lemma 1 (Nondecreasing WCET): WCET is nondecreasing
between two consecutive reset times.

Proof 1: Let there be an interval [t, t + δ] where δ < P
and the Starting Value Indices at t and t + δ are equal
(svi(t) = svi(t+δ)) meaning this time interval is between two
consecutive reset times. By Equation 7, the driving function
value will decrease over the interval [t, t + δ) (meaning
F (t) > F (t+ δ)). By Equation 11, a decrease in the driving
function value maintains or increases job WCET (F (t) >
F (t+ δ)⇒ C(F (t)) ≤ C(F (t+ δ))). Together, Equations 11
and 7 show that WCET is nondecreasing in time over intervals
between two consecutive reset times.

F. Monotonically Ascending Repeating WCET Task

Using the concepts above, a new real-time task model is
now proposed which extends the periodic task model:

τ = (p, f,S,W, d) | p ≥ ci ∀i ∈ Z, i ≤ m− 1, (12)

where p, the period, specifies the time between job releases,
f , the driving function, S, the super schedule, defines when f
resets and to which values, W, the WCET function, defines
the set of WCETs and boundaries, and d, relative deadline,
is the duration of time after a job release that the job must
be completed. For this work, implicit deadlines are assumed
(d = p). The key properties of this model are shown in Fig.
5, an example superschedule with WCET values shown.

IV. CONSTRUCTING THE DEMAND BOUND FUNCTION

This section describes an analytic approach to construct-
ing a Demand Bound Function (DBF), a function which
characterizes the worst-case demand of a real-time task, for
the proposed task model. This section also presents methods
for reducing the search space for calculating the DBF, and

concludes with the DBF algorithm itself. This DBF algorithm
constructs a table of DBF values which are used in schedula-
bility analysis. Note that we focus on demand characterization
in general and not the underlying systems (i.e. uniprocessor
vs multiprocessor). Existing works focus on the application of
DBFs to specific systems such as multiprocessors [11].

A. The Demand Bound Function and its Properties

The DBF, introduced by Baruah et al. [4], is a function
which characterizes demand by providing the maximum cumu-
lative execution time a task (or set of tasks) may require from
a processor over any interval of size δ. The DBF, therefore,
provides the maximum execution for any possible legal job
arrivals for a task system. For this work, the same definition
presented in Baruah et al. [4] is used.

Definition 2 (Demand bound Function): The demand bound
function, DBF (δ), gives the maximum cumulative WCET of
all jobs of a task with both release times and deadlines within
any time interval of length δ.
A task set T = {τ1, τ2, . . . , τn} can be scheduled on a pre-
emptive single processor using Earliest Deadline First (EDF)
scheduling if and only if the sum of all tasks’ DBF (δ) is
less than δ for all δ > 0 [4]. The proposed DBF calculation,
therefore, can guarantee the schedulability of real-time tasks.

B. The GMF Approach to DBF

The GMF model presented in Baruah et al. [3] gives a
DBF for tasks with a repeating sequence of WCETs called
frames. The GMF task model is given by ( ~E, ~D, ~P ) where all
three parameters are vectors of length N , ~E represents frame
WCETs, ~D represents relative deadlines, and ~P minimum sep-
arations. Note that for the proposed approach, ~P corresponds
to the task periods. In the GMF model, the DBF calculation
requires that each frame be the starting point of a search for
WCD and has a running time O(N2 logN) with N being the
number of frames. Since the WCET sequence repeats until
the super period, P , the number of frames as interpreted by
the GMF approach would be

⌈
P
p

⌉
. Assuming the system is

discretized and scaled such that period p = 1, this would give
a running time of O(P 2 logP ). In comparison, the approach to
be shown has a running time of O(nP ). Note that in the case
where the number of reset events is equal to the super period
(i.e. n = P ), the the worst case complexity becomes O(P 2).
Section V also shows empirically that the proposed approach
significantly improves the latency in computing demand over
a GMF-based approach for repeating WCET sequences.

C. The Demand Window and its Properties

To create a DBF for the proposed task model, demand
windows are used to define the time interval over which
the worst-case demand should be calculated. Let a demand
window be modeled as:

w = (a, δ) | a, δ ∈ R+
0 (13)

which defines the interval [a, a+ δ] where a is the offset from
t = 0 and δ is the width of the interval. The demand for a
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given w is then the sum of WCETs of jobs with both releases
and deadlines within the interval.

For a given demand window, w, since implicit deadlines
are used (p = d), the maximum number of jobs of a task with
releases and deadlines within the window is:

nj(δ) =

⌊
δ

p

⌋
. (14)

When building a DBF, a safe approach is to search all
possible window positions and sizes since DBF (δ) must
always be greater than or equal to the demand of any individual
window of the same size. To limit the number of windows that
must be examined, the following lemma establishes that any
window, w, may be transformed into a new window, w′, in
which the window size is an integer multiple of the period (i.e.
δ mod p = 0) while maintaining the same maximum number
of jobs that may be contained within the window.

Lemma 2 (Demand Window Discretization):
∀w = (a, δ) | δ mod p 6= 0,

∃w′ =
(⌊

a
p

⌋
p,
⌊
δ
p

⌋
p
)
|nj(δ) = nj

(⌊
δ
p

⌋
· p
)

Proof 2: Let W be the set of all demand windows, w =
(a, δ). Let w = (a, δ) ∈ W where δ mod p 6= 0. Let W′ be
the set of all demand windows, w = (a, δ) | δ mod p = 0.
Let w′ =

(⌊
a
p

⌋
· p,
⌊
δ
p

⌋
· p
)
∈W′. The maximum number of

jobs of a task with releases and deadlines within w is given
by Equation 14. The maximum number of jobs of a task with
releases and deadlines within w′ is:

nj

(⌊
δ

p

⌋
· p
)

=


⌊
δ
p

⌋
· p

p

 =

⌊⌊
δ

p

⌋⌋
=

⌊
δ

p

⌋
. (15)

Since nj(δ) = nj

(⌊
δ
p

⌋
· p
)

, maximum number of jobs of
a task with releases and deadlines within w remains constant
after reducing a and δ to the closest integer multiple of p
releases and deadlines. Thus, the maximum demand either
window could contain is equal.

Given the above lemma, any window depicted in the remain-
der of the work is assumed to have an offset, a, and window
size, δ, which are integer multiples of p - meaning the leftmost
(t = a) and rightmost (t = a + δ) points of the window will
align with job releases.

D. Reducing DBF Search Space

To further reduce the search space, two additional methods
are presented. First, the WCD of a single super period, P ,
is shown to be sufficient for calculating demand of windows
larger than the super period (i.e. when δ > P ). Second,
any window not aligned with a reset time is shown to be
transformable into a window which is aligned with a reset time
and has equal or greater demand. The nondecreasing nature of
job WCETs after a reset time enables this second method.
These techniques combine to produce the DBF calculation
procedure presented in Algorithm 1 (in Section IV-E).

1) Shortening Windows with Super Periods: Suppose the
DBF for a given repeating WCET sequence is provided for
all values of δ in the range [0, P ]. For any window w = (a, δ)
in which δ > P , the worst-case demand may be calculated by
multiplying the WCD over a single setpoint period (DBF(P ))
by the number of setpoint periods, P , that fit within δ
(N =

⌈
δ
P

⌉
). The WCD over N setpoint periods, DBF (P )·N ,

may then be summed with the WCD of the remaining time,
DBF (δ mod P ), to produce the WCD for δ. Formally, the
equation for this is given by:

DBF (δ) ={ ⌊
δ
P

⌋
·DBF (P ) +DBF (δ mod P ) if δ > P

lookup in DBF table produced by Alg. 1 if δ ≤ P
(16)

This approach avoids building a DBF for values larger than
δ = P as any window of size δ > P may be broken down
into N number of setpoint period WCDs plus the WCD of
some window size δ < P .

2) Aligning Demand Windows: Another search space re-
duction comes from exploiting the nondecreasing WCETs
described in Lemma 1. Since job WCETs are nondecreasing
between two consecutive reset times, this allows any window,
w = (a, δ), in which the rightmost edge of the window
((a+δ) mod P ) does not align with a reset time ((a+δ) mod
P 6= r ∀r ∈ R) to be transformed into a window w′ = (a′, δ′),
in which the rightmost edge of the window ((a′+ δ′) mod P )
aligns with a reset time (∃r ∈ R | (a′ + δ′) mod P = r)
while maintaining or increasing demand. The proof for this is
broken into three cases presented in Lemmas 3-5 below.

Case 1 addresses when the driving function value of the
job released at the leftmost window edge (at t = a) is no less
than driving function values of the job released at the rightmost
window edge (F (a) ≥ F (a+δ)). In Case 1, the demand of the
window is maintained or increased by increasing the window
offset by one period (a′ = a + p). Case 2 addresses when
the driving function value of the job released at the leftmost
window edge is less than the driving function value of the
job released at the rightmost edge (F (a) < F (a + δ)) and
when this inequality would be maintained if the offset was
reduced by one period (F (a − p) ≤ F (a − p + δ)). In Case
2, the demand of the window is maintained or increased by
decreasing the window offset by one period (a′ = a−p). Case
3 addresses when neither of the above cases are true. In this
case, it is shown that the window must be aligned with a reset
time (∃i ∈ Z+ | a+ δ mod P = ri).

Lemma 3 (Case 1: Increasing Window Offsets): Given a
demand window w = (a, δ) where F (a) ≥ F (a + δ) then
w′ = (a+ p, δ) has equal or greater demand than w.

Proof 3: Let w = (a, δ) be a window such that F (a) ≥
F (a+ δ). Suppose the offset of w is increased by one period
such that a′ = a + p creating the new demand window w′.
The increased offset will reduce the demand of the window
by C(a) but raise the demand of the window by C(a+ δ).

F (a) ≥ F (a+ δ) By definition
⇒ C(a) ≤ C(a+ δ) By Eqn. 11
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Fig. 6. An example repeating WCET sequence with period p = 0.5. The
repeated application of Lemma 4 to w1 results in w′1 which has greater
demand and is aligned with the setpoint update at t = 3. The repeated
application of Lemma 3 to w2 results in w′2 which has equal demand and is
aligned with the setpoint update at t = 6.5.

Since C(a+ δ) ≥ C(a), w′ has no smaller demand than w.
Lemma 4 (Case 2: Decreasing Window Offsets): Given a

demand window w = (a, δ), if F (a) ≤ F (a+ δ) and F (a−
p) ≤ F (a− p+ δ) then w′ = (a− p, δ) has equal or greater
demand than w.

Proof 4: The proof is symmetric to the Lemma 3 proof.
Lemma 5 (Case 3: Demand Locally Maximized when

Aligned with Reset Times): Given a demand window w =
(a, δ) where F (a) < F (a+ δ) and F (a− p) > F (a− p+ δ)
then (a+ δ) mod P ∈ R.

Proof 5: Let w = (a, δ) be a window such that F (a) <
F (a + δ) and F (a − p) ≥ F (a − p + δ). By Equation 7
the function value decreases as t → +∞ and increases as
t → 0 except at times t | t mod P ∈ R. Since F (a − p) ≥
F (a − p + δ) and F (a) < F (a + δ), the function output
increased over the interval [a−p+δ, a+δ]. Therefore, it must
be true that (a + δ) mod P ∈ R which means the rightmost
edge of w, a+ δ, is aligned with a reset time.

An illustration of windows to which the above lemmas apply
can be found in Fig. 6.

Theorem 1 (Maximization of Window Demand by Alignment
with Setpoint Updates): For any window w ∈ W, the demand
of w is maintained or increased when discretized and aligned
with a setpoint update - when (a+ δ) mod P ∈ R.

Proof 6: The proof follows directly from Lemmas 3-5.
Corollary 1 (Reset Times as Local Optima): The set of

demand windows whose rightmost edges align with a setpoint
update, (a + δ) mod P ∈ R, are local Optima for WCD of
windows of the same size δ.

Proof 7: By Theorem 1, any demand window w not aligned
with a reset time (w = (a, δ) | (a+ δ) mod P /∈ R), may be
shifted to align with a reset time and maintain or increase
demand.

By Theorem 1 and Corollary 1 solving for DBF (δ) only
requires searching for windows of length δ whose rightmost
edges (a+ δ) are aligned with a reset time (∃i ∈ Z∗ | (a+
δ mod P ) = ri). Searching for the WCD of a particular

window of size δ is now limited to demand windows aligned
with reset time. That is, to find DBF (δ), only n unique
window positions must be searched. Having established which
finite set of windows need to be searched, the following
subsections cover the algorithms for generating the repeating
WCET sequence and constructing the DBF.

E. DBF Construction Algorithm

Algorithm 1 gives the procedure for constructing the DBF
for this task model. The procedure can be broken into four
major steps:

1) Lines 2-4 create the repeating WCET sequence (RWS)
by enumerating the WCETs of all jobs within [0, P )
using C(F (t)).

2) Lines 7-10 calculate the WCD of all windows of size δ
that are right-aligned to each reset time for every demand
window size in the range δ = [1, P ].

3) Lines 11-12 store the WCD of a fixed right-aligned
window and fixed δ.

4) Line 15 stores the WCD of all right-aligned windows
of fixed δ.

The result is a table of in which any δ ≤ P | δ ∈ N has an
associated upper bound on demand.

Algorithm 1 MAE repeating WCET sequence DBF
1: procedure MAE-RWS-DBF(p, f(t), S,W, d, δ)
2: for t← 0 to P − 1 do . For each job release. . .
3: WCETS[t] ← C(F (t)) . Calc. WCET using f(t), S,W
4: end for
5: DBF [0, 1, . . . , P ]← 0 . Init. DBF table
6: cusum[0, 1, . . . , n] ← 0 . Init. sum vars
7: for δ ← 1 to P do . For each δ size. . .
8: maxDemand = 0 . Init. max demand
9: for s← 0 to n do . For each reset time. . .

10: cusum[s] += WCETS[(rs − δ)%P ] . Sum WCET.
11: if cusum[s] > maxDemand then . Update the max
12: maxDemand ← cusum[s]
13: end if
14: end for
15: DBF[δ] ← maxDemand . Add entry for δ
16: end for
17: Return DBF
18: end procedure

Applying the table to Equation 16, gives the complete DBF
as the DBF for any δ ≤ P may be found in the table. The DBF
may be computed in O(nP ) time assuming P is scaled such
that p = 1. Note that in the case where the number of reset
events is equal to the super period (i.e. n = P ), the the worst
case complexity becomes O(P 2). This complexity is a result
of exploiting both the homogeneous period and only needing
to check windows aligned with reset times - instead of each
job release (or frame from the GMF perspective). The GMF
approach cannot use either of the above exploits as frames are
not guaranteed to have homogeneous periods and each frame
is a candidate for beginning a WCD search.
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V. EXPERIMENTAL EVALUATION AND RESULTS

Using the system model and DBF calculations provided, the
robotic arm described in the introduction was implemented
as a case study except that a conditionally enabled sensors
simulated with an ultrasonic rangefinder as opposed to a
deburring or welding tool. To explore runtime improvement
of the proposed DBF at scale and across random task sets,
schedulability analysis was performed on 10,000 randomly
generated task sets composed of one RWS task and a random
number of periodic tasks. All source code for the experiments
and case study may be found online [24]. In both the case
study and simulation, analysis is performed for a uniprocessor.

A. Case Study

To evaluate practical application and assess DBF calculation
improvement in a real system, a robotic arm, shown in Fig. 7
was implemented. The robotic arm demonstrates conditional
enabling of sensors. The robotic arm used FreeRTOS [1] on
the Arduino Mega 2560 for computation. The hardware and
software setups are provided below.
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Fig. 7. Case study robot arm and schematic.

1) Hardware Setup: An Arduino Mega 2560 is the real-
time controller with a uniprocessor clock speed of 16MHz. For
yaw and pitch sensing, an Inertial Measurement Unit (IMU)
and potentiometer are used. For yaw and pitch actuation,
the arm uses two 6VDC motors with 48:1 transmissions
powered by an HW95 breakout with an L298N Dual DC
H Bridge. The HC-SR04 Ultrasonic Distance Sensor at the
end of the arm simulates the conditionally-enabled sensor
(extra computational workload) carried by an end effector. In
practice, this may be a tool such as a deburrer, spot welder,
drill, or other sensor-enabled end effector.

2) Software Setup: The real-time operating system is a port
of FreeRTOS [1] and all code is in C. The AVR-GCC compiler
is used (included with the Arduino IDE). Pulse Width Mod-
ulation is used to control motors, Inter-Integrated Circuit for
the IMU, and Analog-to-Digital Converter for potentiometer
sampling. The Simple MPU6050 library is also used [26].
Two proportional feedback controllers use tracking errors from
the IMU and potentiometer to demonstrate repeating motion.

TABLE I
CASE STUDY MODEL PARAMETERS

Parameter Value Units
C [14.0,6.0,5.0] ms
B [0,10,45,180] degrees
f(t) 120 · e−0.0188t N/A
S [120,0] degrees
R, P [0,1080], 2700 ms
p 18 ms
δ 2700 ms

3) Conditional-Enabling Description and Parameteriza-
tion: The robot arm is provided two setpoints for the arm base
to drive to. When the arm base error is below 45 degrees, the
end-effector potentiometer is enabled so the wrist may adjust
to its setpoint. When the arm base error is below 10 degrees,
the ultrasonic rangefinder is enabled. The wrist potentiometer
sampling and ultrasonic rangefinder pings activated by the task
raise WCET as arm base error decreases. Table I provides
the task parameters for the implemented arm. Note that this
is a very short sequence of setpoints and the entire motion
sequence is completed in 2.7 seconds.

An oscilloscope (DS1102E) was used to verify timing
characteristics implemented by the real-time task.

4) Evaluation: Using the empirically derived values as in-
put to the proposed DBF calculation, the runtime improvement
of the proposed algorithm was calculated. Recall that the
GMF approach and the proposed approach to calculating DBF
are both exact; thus the comparison is based on algorithm
runtime alone. For the empirically derived task, the GMF DBF
calculation completed in 132.930ms while the RWS-MAE-
DBF completed in 0.574ms. Thus, proposed DBF calculation
was 231.568 times faster than the GMF approach.

B. Simulations

In addition to the case study, simulations were performed to
determine the runtime improvement of the proposed DBF at
scale and across random task sets. Each task set was composed
of a random number of periodic tasks and one RWS task. The
periodic tasks were generated using the UUNIFAST approach
[5]. The RWS tasks were created using randomly generated
values for f , W, S, and w with uniform distribution. The
hyperperiod of the periodic tasks and the RWS tasks were
then used to bound the DBF calculation. The bounds on
randomly generated parameters are listed in Table II. Note
that the target periodic task utilization is constrained to the
range [1− c0, 1− cm−1]. This constraint prevents the periodic
tasks from having utilizations small enough that the task set
is always feasible (recall that p = 1) or large enough that the
task set is never feasible. Keeping periodic task utilizations in
the range requires analysis via the DBF and results is a mix
of feasible and infeasible task sets. The simulations (including
the case study calculation) were developed using Python 3.8.5.
The simulating platform was an i7-6700HQ CPU @ 2.60GHz
CPU with 16GB RAM.
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TABLE II
10,000 TASK SETS RANDOM GENERATION CONSTRAINTS

Parameter Min. Value Max. Value
p 1 1
a,B 1 100
m,n,S 1 10
C 1 p
R, P 1 50
δ p 10 · P
Num. Periodic Tasks 1 5
Periodic Task period 1 P
Target Periodic Task utilization 1− c0 1− cm−1

TABLE III
10,000 TASK SETS AVERAGE STATS

Metric Average Value
Num Periodic Tasks 3.000
Super Period 193
GMF DBF Calc. Time 657.950 ms
RWS DBF Calc. Time 3.010 ms
RWS DBF Calc. Time Improvement 179.378
Periodic Task Utilization 0.496
Schedulability Analysis Time 0.0004 ms
Schedulable Task Sets Percent 0.455

The average runtime improvement of the DBF calculations
are given in Table III. The proposed DBF calculation is, on
average, 179.378 times faster than the GMF approach. The
schedulability analysis determined that 45.46% of all task
sets were feasible. Figure 8 presents all algorithm runtimes.
The super period, P , is used as the x-axis since both DBF
calculation complexities can be expressed in terms of P .
Recall that the GMF DBF runtime complexity is O(N2 logN)
which translates to O(P 2 logP ) in terms of P . In contrast, the
proposed approach has a runtime complexity of O(n·P ) which
is O(P 2) when n = P in the worst case. Note that in practice
n << P since n ≈ P implies that the driving function is reset
almost as frequently as jobs are released.
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VI. DISCUSSION AND PRACTICAL FACTORS

A. Driving Functions for Oscillating Systems

The model relies on a strictly decreasing driving func-
tion. For asymptotically stable systems that do not exhibit
oscillation (i.e. first-order systems) the driving function is
straightforward. For asymptotically stable systems that exhibit
oscillation (i.e. second-order systems), the driving function
creates an upper bound on execution time. For example,
suppose the following generic second order system is used:

x(t) =

(
e−zωt√
1− z2

)
sin
(
ω
√
1− z2t+ arccos (z)

)
| 0 < z < 1, z ∈ R>0, ω ∈ R≥0

One example driving function for this system could be:

xdriving(t) =


b1

(
e−zωt
√
1−z2

)
x(t) ≤ b1

b1

(
e−zωt
√
1−z2

)
t > π−arccos(z)

ω
√
1−z2

x(t) otherwise

since xdriving(t) will, by definition, be strictly decreasing,
it will provide an upper bound on WCET (since it matches
the second order system until x(t) = b1) but not exhibit
oscillations. Figure 10 illustrates these equations with z =
0.3, ω = 6.0, b1 = 0.1.

B. Alternative WCET vs Driving Function Relationships

In this work, WCET is assumed to increase as the driving
function decreases. This relationship may be altered and
maintain the O(nP ) DBF calculation time. For example,
suppose the driving function f(x) = x, a strictly increasing
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function. Keeping the relationship between WCET and the
driving function value the same, the WCET sequences would
be nonincreasing except at reset times (t ∈ R). Applying a
symmetric version of the proofs results in lemmas supporting
the search of demand windows left-aligned with reset times.

If the relationship between the driving function and WCET
were flipped such that lower driving function values implied
lower WCET and vice versa. This inverted relationship would
cause the sequences of WCETs produced to be nonincreasing
except at reset times. Thus, the demand windows which must
be searched are again reduced to windows which are left-
aligned with reset times. While f(x) is defined to be strictly
monotone and the function C(x) is monotonic, the only
demand windows which must be considered to bound demand
will be aligned to reset times.

C. Discretization and Scaling

The model provided accepts continuous-time functions.
Modern real-time control, however, is typically performed
by discrete-time microprocessors. To discretize the system
model, the reset times, R, and super period, P , must be
transformed into the smallest integer multiples of the period
which exceed the original parameter value. For example, given
a reset time ri, the transformed reset time is r′i =

⌈
ri
p

⌉
· p.

This transformation will not alter the original WCET since
a controller with period p which receives a starting value at
time t | t mod p 6= 0 will be unable act on the new starting
value until the next job release at time

⌈
t
p

⌉
· p. After this

transformation, all timing-related values may be scaled such
that p = 1. The assumption that p = 1 is not required but
reduces the computational complexity.

VII. CONCLUSION AND FUTURE WORK

In this work, a new method of modeling real-time workloads
defined by Repeating WCET Sequences with Monotonically
Ascending Execution is presented. An exact DBF calculation
is provided, implemented, and evaluated through case study
and simulation of 10,000 randomly generated task sets. The
proposed approach is, on average, 231 and 179 times faster
than the state-of-the-art in the case study and simulation
respectively. For systems operating in dynamic environments
where schedulability is frequently evaluated online, the pri-
mary importance of this work is the more tractable characteri-
zation of demand. Challenges for future work include allowing
multiple driving functions to be used in generating sequences,
varying reset times and starting values (for example, as a
graph) to incorporate more flexibility.
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