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Abstract

The elastic task model [9] is a powerful model for adapt-
ing real-time systems in the presence of uncertainty. This
paper generalizes the existing elastic scheduling approach
in several directions. It reveals that the original task com-
pression algorithm in [9] in fact solves a quadratic pro-
gramming problem that seeks to minimize the sum of the
squared deviation of a task’s utilization from initial desired
utilization. This finding indicates that the task compression
algorithm may be applied to efficiently solve other similar
types of problems. In particular, an iterative approach is
proposed to solve the task compression problem for real-
time tasks with deadlines less than respective periods. Fur-
thermore, a new objective for minimizing the average differ-
ence of task periods from desired values is introduced and
a closed-form formula is derived for solving the problem
without recursion.

1. Introduction

A desirable property of any real-time system is the guar-
antee that it will perform at least beyond some pre-specified
thresholds defined by system designers. This is usually not
a concern under normal situations where analysis has been
done offline to ensure system performance based on the reg-
ular workload. However, in response to an event such as
user’s input or changing environment, the load of the sys-
tem may dynamically change in such a way that a temporal
overload condition occurs. The challenge, then, is to pro-
vide some mechanism to guarantee the minimum perfor-
mance level under such circumstances.

Many real-time task models have been proposed to ex-
tend timing requirements beyond the hard and soft dead-
lines based on the observation that jobs can be dropped
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without severely affecting performance ([4], [18]). For ex-
ample, Ramanathan et al. proposed both online [16] and
offline [25] scheduling algorithms that are based on the
(m,k) model, which is analyzed in [17]. In this model,
up to k − m consecutive jobs are allowed to be dropped
in any sliding window of k. Moreover, [29] presented the
Dynamic Window-Constrained Scheduling (DWCS) algo-
rithm, which is similar except that the window k is fixed.
Further enhancement to these successful models can be
found in [24] and [23]. Other frameworks such as the impre-
cise computation model [13] and reward-based model [2]
can be used to capture the situations where the quality of
service is proportional to the amount of workload com-
pleted.

Despite the success of the abovementioned models in
alleviating overload situations, it is sometimes more suit-
able to execute jobs less often instead of dropping them
or allocating fewer cycles. For example, limitations on the
throughput capacity of ad hoc communication networks [1]
make it highly desirable to reduce overall network traffic by
having control tasks adaptively adjust their periods in re-
sponse to the actual activity level of the control application.

The work in [20] was among the first to address this type
of requirements. Seto, et al. considered the problem of
finding a feasible set of task periods as a non-linear pro-
gramming problem which seeks to optimize a specific form
of control performance measure [26]. In [27], finding all
feasible periods of a given set of tasks was studied for the
Rate Monotone (RM) scheduling algorithm. Cervin et al.
used optimization theory to solve the period selection prob-
lem online by adaptively adjusting task periods while op-
timizing a specific form of control performance [11]. Re-
cently, [5] offered an optimal search algorithm that solves
the period selection problem for fixed-priority scheduling
schemes. The algorithm may be applicable only during the
design phase due to its potentially high complexity. An-
other interesting framework was introduced in [19] where
task periods are adjusted in response to varying computa-
tion times.



Buttazzo and his colleagues proposed an elegant yet
more flexible framework known as the elastic task model [8]
where deadline misses are avoided by increasing tasks peri-
ods. The work in [10] extends the basic elastic task model
to handle cases where the computation time is unknown,
[9] incorporated a mechanism to handle resource constraints
within the elastic framework, and [7] provided a means to
smoothly adjust task execution rate. In addition, [14] uses
a control performance metric as a cost function to find an
optimal sampling interval for each task.

This paper generalizes the existing elastic scheduling ap-
proach in several directions. First, we re-examine the prob-
lem of period determination in the elastic task model and
show that the task compression algorithm in [9] whose pre-
cise nature was not made clear in the original work in fact
solves a quadratic programming (QP) problem. The QP
problem seeks to minimize the sum of the squared deviation
of every task’s utilization from its initial utilization, equiv-
alent to minimizing the task set’s overall energy. Identify-
ing the nature of the optimization problem underlying the
task compression algorithm is important in several aspects.
For instance, it may suggest other relevant optimization ob-
jectives and shed light on determining task periods in the
presence of uncertainty for other task models.

Second, we select an alternative objective function, i.e.,
minimizing the average difference of task periods from their
desired minimum periods, as the sampling period is directly
related to the performance of some controllers. We show
that the solution to this optimization problem can be evalu-
ated with a closed-form formula.

Lastly, the proposed framework is extended to treat cases
where task deadlines are less than task periods. Such re-
quirements often arise in control systems to reduce jitters,
for example. Moreover, in some situations, it is desirable
that tasks finish executing sooner, even if their periods are
not up. We formulate the problem of period determination
as a constrained optimization problem and propose a heuris-
tic approach based on the the task compression algorithm
in [9] to solve the problem. The heuristic is guaranteed to
find a feasible solution, if one exists. It is quite efficient and
is hence suitable for online period adjustment. Experimen-
tal results show that the heuristic is able to find a solution
that is close to the global optimal solution.

The remainder of the paper is organized as follows. We
begin by reviewing key background materials in Section 2.
Section 3 presents the solutions to the period determination
problem for tasks with deadlines equal to periods. The opti-
mization approach is then extended in Section 4 to treat the
case where task deadlines are less than task periods. Ex-
perimental results are presented and discussed in Section 5.
Finally, the paper concludes with Section 6.

2. Preliminaries

This section describes the system under consideration as
well as important assumptions made throughout the paper.
We also briefly review the task compression algorithm used
for period selection [9].

2.1. System model

We consider the system where each task τi is pe-
riodic and is characterized by the following 6-tuple:
(Ci,Di, Ti, Timin

, Timax
, ei), for i = 1, . . . , N , where N

is the number of tasks in the system, Ci is the worst case
execution time of τi, Di is its deadline, and Ti is τi’s initial
period. Furthermore, Timin

denotes the most desirable pe-
riod of τi, as specified by control system designers, whereas
Timax

represents the maximum time interval between two
executions of a task that will prevent system performance
from falling below some desirable thresholds (e.g., a con-
trol system becomes unstable). The elastic coefficient, ei,
represents the resistance of task τi to increasing its period
in face of changes. The smaller the elastic coefficient of a
task, the harder it is to increase that task’s period.

Task deadlines are first assumed to be equal to task peri-
ods. This requirement will be relaxed in Section 4. All task
attributes are real values and are assumed to be known a pri-
ori. The current utilization of τi is Ui = Ci

Ti
. Similarly, the

minimum and maximum utilizations of τi is Uimin
= Ci

Timax

and Uimax
= Ci

Timin
, respectively.

2.2. Elastic task model

In [9], Buttazzo, et. al. modeled a task as a spring sys-
tem, where increasing or decreasing a task period is analo-
gous to compressing or decompressing a spring. The elas-
tic coefficient, ei, introduced above hence has its intuitive
meaning of the hardness of the spring. The purpose of in-
creasing task periods is to drive the total utilization of the
system down to some desired utilization level, Ud, analo-
gous to a spring system trying to minimize its energy under
an external force.

The attractiveness of the elastic task model is its accom-
panying task compression algorithm, which is quite effi-
cient

(
O(N2)

)
and can readily be used online. (In fact, the

elastic task model and the task compression algorithm have
already been implemented in the S.Ha.R.K. kernel [15].)
The task compression algorihtm works as follows. If it is
possible to drive the system utilization down to Ud with-
out violating any period bounds, the algorithm will return
a set of feasible periods (T1, T2, . . . , TN ) that can be used
by the system. Tasks whose periods are fixed (if ei = 0 or
Timin

= Timax
) are considered inelastic and are treated as



special cases. The amount of utilization that each remain-
ing, non-inelastic task should receive is computed based on
its elastic coefficient, initial period, and the amount of uti-
lization that must be reduced to achieve Ud. The resultant
period of a task τi is guaranteed to fall somewhere between
Timin

and Timax
.

Throughout this paper, we will assume that the EDF
(Earliest Deadline First) scheduling algorithm [21] is used.
Furthermore, we will focus our attention on cases where
tasks need to either increase or decrease its utilization in re-
sponse to either internal (e.g., change in sampling rate of
one or more tasks in the system) or external (e.g., network
traffic) factors.

3. General period selection

Given a particular set of real-time tasks, there may exist
numerous sets of feasible periods. It is not difficult to see
that different sets of periods would lead to different perfor-
mance of the resultant system. In general, the period selec-
tion problem can be expressed as an optimization problem.
That is,

optimize: performance metric
s.t.: tasks are schedulable

period bounds are satisfied

Below we introduce two specific performance metrics
and discuss their implications. We assume that tasks dead-
lines equal task periods.

3.1. Minimize utilization perturbation

Processor utilization by each task is an important mea-
sure for any real-time system. It not only reveals the amount
of system resource dedicated to the task but also impacts
schedulability. In the elastic task model, one consequence
of changing task periods is changing the utilization of tasks.
From the stand point of performance preservation, it is de-
sirable to minimize the changes in task utilization. This ob-
jective can be captured by the following constrained opti-
mization problem.

min: E(U1, · · · , UN ) =
N∑

i=1

wi (Ui0 − Ui)
2 (1)

s.t.:
N∑

i=1

Ui ≤ Ud (2)

Ui ≥ Uimin
for i = 1, 2, · · · , N (3)

Ui ≤ Ui0 for i = 1, 2, · · · , N (4)

In the formulation, N is the number of tasks in the sys-
tem, Ui0 is the initial utilization of task τi and Ui0 ≥ Uimin

,

Ui is the utilization of τi to be determined, and Ud is the
desired total utilization. (Ud is usually set to 1 for EDF
scheduling.) Constant wi (≥ 0) is a weighting factor and
reflects the criticality of a task. More critical tasks would
have larger wi’s. The first constraint simply states the
schedulability condition under EDF. The rest of the con-
straints bounds the utilization, equivalently bounds the task
period by Timin

and Timax
where Timin

= Ci/Uimax
and

Timax
= Ci/Uimin

.
Note that for wi = 0, (1) does not change regardless of

what Ui value is used. To help satisfying (2), it is natural to
simply use Ui = Uimin

. Hence, for the rest of the paper, we
will focus on the case where wi > 0 for all 1 ≤ i ≤ N .

The problem in (1)–(4) belongs to the category of
quadratic programs and can be solved in polynomial time.
However, solving such a problem during runtime can be too
costly. What makes the above formulation attractive is that
its solution is exactly the same as that found by the task
compression algorithm in [9]. We introduce a lemma and a
number of theorems to support this argument.

Lemma 1 Given the constrained optimization problem as
specified in (1)–(4) and

∑N
i=1 Ui0 > Ud, any solution, U∗

i ,

to the problem must satisfy
∑N

i=1 U∗
i = Ud and U∗

i �= Ui0,
for i = 1, . . . , N .

Proof: We prove the lemma by utilizing the Karush-Kuhn-
Tucker (KKT) necessary conditions for the solution to the
given problem, which can be written in terms of the La-
grangian function for the problem as

Ja (U, µ) =
N∑

i=1

wi (Ui0 − Ui)
2 + µ0

(
N∑

i=1

Ui − Ud

)
+

N∑
i=1

µi (Uimin
− Ui) +

N∑
i=1

λi (Ui − Ui0) (5)

where µ0, µi, and λi are Lagrange multipliers, µ0 ≥ 0,
µi ≥ 0, and λi ≥ 0, for i = 1, . . . , N . The necessary
conditions for the existence of a relative minimum at U∗

i

are, for all i = 1, . . . , N ,

0 =
∂Ja

∂U∗
i

= −2wi (Ui0 − U∗
i ) + µ0 − µi + λi (6)

0 = µ0

(
N∑

i=1

U∗
i − Ud

)
(7)

0 = µi (Uimin
− U∗

i ) (8)

0 = λi (U∗
i − Ui0) (9)

Assume that (2) is inactive, i.e., µ0 = 0 and
∑N

i=1 U∗
i <

Ud. Then at least one constraint in (3) or (4) must be active.
Suppose the k-th constraint in (3) is active. That is, U∗

k =



Ukmin
and µk ≥ 0. Then, the k-th constraint in (4) must be

inactive, i.e., λk = 0. From (6), we obtain

µk = −2wk(Uk0 − Ukmin
) < 0 (10)

which contradicts the assumption that µk ≥ 0. Therefore,
if any U∗

k = Ukmin
, constraint (2) must be active.

Now assume that some constraints in (4) are active while
others are inactive. Suppose U∗

h = Uh0 (active) and
Ukmin

< Uk < Uk0 (inactive). Then µh = 0, λh ≥ 0,
and µk = λk = 0. From (6), we have

µ0 = 2wh(Uh0 − U∗
h) + µh − λh = −λh (11)

µ0 = 2wk(Uk0 − U∗
k ) (12)

Note that (11) and (12) cannot be simultaneously satisfied.
Therefore, we can either have all the constraints in (4) be
active or all are inactive. If all the constraints in (4) are
active, we have

∑N
i=1 U∗

i =
∑N

i=1 Ui0 > Ud which con-
stradicts the initial assumption. If all the constraints in (4)
are inactive, (12) requires that µ0 > 0, which contradicts
the assumption that constraint (2) is inactive. Therefore,
for any solution to the optimization problem, constraint (2)
must be active, i.e.,

∑N
i=1 U∗

i = Ud. �

Theorem 1 Given the constrained optimization problem as
specified in (1)–(4),

∑N
i=1 Ui0 > Ud, and

∑N
i=1 Uimin

≤
Ud, let Û =

∑
U∗

i
�=Uimin

Ui0 +
∑

U∗
i
=Uimin

Uimin
. A solu-

tion to the problem, U∗
i , is optimal if and only if

U∗
i = Ui0 −

1
wi

(
Û − Ud

)
∑

U∗
j
�=Ujmin

(1/wj)
(13)

for U∗
i > Uimin

and U∗
i = Uimin

otherwise, and Û > Ud.

Proof: Consider the KKT conditions given in (6)–(9). From
Lemma 1, we know that any solution to the given optimiza-
tion problem must satisfy (2), i.e., Ud =

∑N
i=1 U∗

i , and
U∗

i �= Ui0. Hence, we only need to consider the case where
λi = 0, for all i = 1, . . . , N , Suppose that the k-th con-
straint in (3) is active. We have U∗

k = Ukmin
, and

µk = µ0 − 2wk (Uk0 − Ukmin
) , (14)

Otherwise, we have µk = 0. By summing up (6) for all i
and using the conclusions above,

µ0 =
2
(
Û − Ud

)
∑

U∗
i
�=Uimin

(1/wi)
. (15)

As long as Û > Ud, µ0 > 0, µi ≥ 0, and constraints in (4)
are satisfied. Therefore, a solution, U∗

i , to the optimization
problem either satisfies U∗

i = Uimin
or can be obtained by

combining (15) with (6) for U∗
i > Uimin

. (Note that µi = 0
when U∗

i > Uimin
.) That is,

U∗
i = Ui0 −

1
wi

(
Û − Ud

)
∑

U∗
j
�=Ujmin

(1/wj)
(16)

Additionally, since the objective function and the inequality
constraints in (1)–(4) are convex, the necessary conditions
for optimality provided by the KKT conditions also become
the sufficient conditions for optimality [22]. Hence, the so-
lution found in Theorem 1 is a global minimum. �

Corollary 1 Consider a set of N tasks where Ui is the uti-
lization of the ith task. Let Ui0 denote the initial desired
utilization of task τi and let ei > 0 be a set of elastic co-
efficients for i = 1, . . . , N . Let Ud be the desired utiliza-
tion level and

∑N
i=1 Ui0 > Ud. The task utilizations Ui, for

i = 1, . . . , N obtained from the task compression algorithm
in [9] minimizes

E(U1, . . . , UN ) =
N∑

i=1

1
ei

(Ui0 − Ui)2

subject to the inequality constraints
∑N

i=1 Ui ≤ Ud, Ui ≥
Uimin

, and Ui ≤ Ui0, for i = 1, . . . , N .

The above corollary has several significant conse-
quences, as it reveals the optimization criterion inherent in
the task compression algorithm and illustrates that the task
compression algorithm can be used to solve certain convex
programming problems.

3.2. Minimize task periods

For some controllers, instead of focusing on utilization,
it may be more useful to examine task periods directly, as
the sampling period is monotonically decreasing faster than
the controller performance.

If the range of possible period values for each task is un-
bounded, the following constrained optimization problem
can be used to minimize the changes in task periods.

min: J(T1, · · · , TN ) =
N∑

i=1

wi(Ti − Ti0) (17)

s.t.:
N∑

i=1

Ci

Ti
≤ 1 (18)

The constraint in equation (18) is simply the condition
assuring that the task set is schedulable under EDF. Let T ∗

i

denote a locally optimal set of task periods for the above
optimization problem. The following theorem provides a



closed-form formula to compute the solution to this min-
imization problem. The theorem can be proved through
a straightforward application of the KKT necessary condi-
tions (see [12] for proof).

Theorem 2 Given the constrained optimization problem
specified in equations (17)–(18), a locally optimal solution
is

T ∗
i =

√
Ci

wi

N∑
k=1

√
wkCk (19)

Remark: If we require that Ti ≥ Timin
(in other words,

there is a lower bound on the desired period), the constraint
will be satisfied if the choice of wi satisfies the following
inequality:

√
wiTimin

≤
√

Ci

N∑
k=1

√
wk

√
Ck (20)

The above expression is obtained by simply letting (19) be
greater than or equal to Timin

. The significance of (20) is
that it can be used to identify a set of admissible weighting
factors whose selection ensures Ti ≥ Timin

. Indirectly, (20)
also ensures that the resultant task periods will be greater
than zero.

4. Period selection with additional deadline
constraints

In this section, we consider the case where task dead-
lines are less than task periods. This more general model is
useful, as there are situations where it is desirable for a task
to finish executing early (before its period ends). We again
formulate the period selection problem as a constrained op-
timization problem. and propose a novel heuristic based on
the task compression algorithm. The algorithm is guaran-
teed to find a local optimal solution to the problem, if one
exists and is efficient enough for online use.

4.1. Simplify feasibility condition

Baruah et al. considered the case where task deadlines
are less than or equal to task periods and derived a sufficient
and necessary condition for EDF schedulability [3], which
is later improved in [6]. The condition is restated in the
following theorem.

Theorem 3 [3] Given a periodic task set with Di ≤ Ti, the
task set is schedulable if and only if the following constraint
is satisfied ∀L ∈ {kTi + Di ≤ min(Bp,H)} and k ∈ N

(the set of natural numbers including 0), where Bp and H
denote the busy period and hyperperiod, respectively,

L ≥
N∑

i=1

(⌊
L − Di

Ti

⌋
+ 1
)

Ci (21)

Based on Theorem 3, the period determination problem
can be formulated as follows:

min: E(U1, · · · , UN ) =
N∑

i=1

wi (Ui0 − Ui)
2 (22)

s.t.: L ≥
N∑

i=1

(⌊
L − Di

Ti

⌋
+ 1
)

Ci (23)

L ∈ {kTi + Di ≤ min(Bp,H)} , k ∈ N (24)

Ui ≥ Uimin
for i = 1, 2, · · · , N (25)

Ui ≤ Ui0 for i = 1, 2, · · · , N (26)

Solving the above constrained optimization problem can
be extremely time consuming. Hence, we investigate solv-
ing the problem approximately with an efficient algorithm
below. An approximate solution is both acceptable and pre-
ferred, as a rapid response allows the system to degrade
gracefully instead of going into catastropic states caused by
some dynamic perturbations. Since verifying the constraint
in (21) for all L values is the main source of high complex-
ity, we consider simplifying the feasibility test by using the
following stronger schedulability condition,

L ≥
N∑

i=1

(
L − Di

Ti
+ 1
)

Ci (27)

It is not difficult to see that if the inequality in (27) is sat-
isfied then the original inequality in (21) must also be sat-
isfied. What makes (27) an excellent candidate for online
use is that the schedulability of a task set can be determined
based on a single L value, L∗. Below, we introduce several
lemmas and a theorem to support this claim.

For simplicity, we denote the set of all possible values of
L by a distinct ordered set L = {L0, L1, . . .} where L =
kTi + Di,∀k ∈ N and L ≤ min(Bp,H).

Lemma 2 Given a set Γ of N tasks with Di ≤ Ti, let Lj

and Lj+1 ∈ L and let Lj < Lj+1. If the constraint in (27)
is satisfied for Lj , then it is satisfied for Lj+1.

Proof: By regrouping the terms in (27), we can rewrite the
inequality as follows.

L ≥
∑N

i=1 Ci −
∑N

i=1 UiDi

1 −∑N
i=1 Ui

(28)

Given that Lj satisfies the constraint in (28) and Lj+1 >
Lj , it immediately follows that Lj+1 satisfies the constraint
in (28). �



Based on the above lemma, we can conclude that if the
constraint in (27) is satisfied for Lj , then it is also satisfied
for all Lk ∈ L, where Lk > Lj . It may then seem natural
to simply set L∗ to be the minimum of all L values in L.
However, such a choice can be extremely pessimistic, often
resulting in finding no feasible solutions to the problem. To
avoid being too pessimistic, we introduce the next lemma,
which identifies useful necessary conditions for any feasible
task set. The lemma helps to eliminate pessimistic choices
of L∗ and the proof can be found in [12].

Lemma 3 Let Di be the deadline of task τi in a given task
set Γ. Further, let the tasks in Γ be ordered in a non-
decreasing order of deadlines and suppose that Dmin is
unique. Regardless of the choices of periods, any task set
that is schedulable must satisfy the following property:

j∑
i=1

Ci ≤ Dj ,∀j = 1, . . . , N (29)

We are now ready to introduce two lemmas which form
the basis for our selection of L∗.

Lemma 4 Consider a set Γ of N tasks that satisfy the con-
dition in Lemma 3. Let the tasks in Γ be sorted in a non-
decreasing order of deadlines. If D1 + T1 ≤ D2, and
L∗ = D2 satisfies the inequality constraint in (27), then
the task set is guaranteed to be schedulable.

Proof: Let Lh = L∗ = D2. By Lemma 2, any Lj ∈ L with
j > h satisfies constraint in (27) and hence satisfies (21).
Now consider j < h. Since Di ≥ D2 for i > 2, Lj can
only be equal to D1 + kT1 for some k ∈ N . In order for
Lj to satisfy (21), noting that |D1 + kT1 − Di| < Ti for
i ≥ 2, we need D1 + kT1 ≥ (k + 1) · C1, which holds true
according to Lemma 3. Therefore, for all values of L ∈ L,
(21) is satisfied. �

Lemma 5 Consider a set Γ of N tasks that satisfy the con-
dition in Lemma 3. Let the tasks in Γ be sorted in a non-
decreasing order of deadlines. If D1 + T1 > D2, and
L∗ = minN

i=1(Ti + Di) satisfies the inequality constraint
in (27), then the task set is guaranteed to be schedulable.

Proof: Recall that L is a distinct ordered set. There are two
possible types of values that L∗ could take: either L∗ is set
to some deadline Dk where Dk < minN

i=1(Ti + Di), or L∗

is set to minN
i=1(Ti + Di). For any Dk < minN

i=1(Ti + Di)
the inequality in (21) is automatically satisfied since the
task set satisfies the condition in Lemma 3. Therefore,
minN

i=1(Ti + Di) is the smallest L amongst all the remain-
ing L values that are not inherently covered by Lemma 3.
Hence, if L∗ = minN

i=1(Ti + Di) satisfies (27), all the re-
maining L values must also satisfy (27) following Lemma 2.

Since (27) is a stronger condition than (21), (21) will also
be satisfied for all L values. �

Based on Lemmas 4 and 5, we have a new schedulability
test which is stated in the following theorem. The proof for
the theorem can be found in [12].

Theorem 4 Consider a set Γ of N tasks that satisfy the
condition in Lemma 3. Let the tasks in Γ be sorted in a non-
decreasing order of deadline. A given task set is schedula-
ble if

L∗ ≥
N∑

i=1

(
L∗ − Di

Ti
+ 1
)

Ci (30)

where

L∗ =
{

D2 : D1 + T1 ≤ D2

minN
i=1 (Ti + Di) : otherwise

The above theorem paves the way to finding a simpler
constrained optimization problem formulation for the pur-
pose of period determination. We present the actual prob-
lem formulation in the following subsection.

4.2. Minimize utilization perturbation with dead-
line constraints

By using Theorem 4, we can express the period determi-
nation problem where task deadlines are less than task peri-
ods as a constrained optimization problem similar to that in
(1)–(4). Letting ri = L − Di, (27) can be rewritten as

N∑
i=1

riUi ≤ L −
N∑

i=1

Ci. (31)

Then the period determination problem where task dead-
lines are less than task periods can be formulated as

min: E(U1, · · · , UN ) =
N∑

i=1

wi (Ui0 − Ui)
2 (32)

s.t.:
N∑

i=1

riUi ≤ L −
N∑

i=1

Ci (33)

L =

{
D2 : D1 + C1

U1
≤ D2

min(Ci

Ui
+ Di) : otherwise

(34)

Ui ≥ Uimin
for i = 1, 2, · · · , N (35)

Ui ≤ Ui0 for i = 1, 2, · · · , N (36)

Note that the above constrained optimization problem
would have exactly the same format as the QP problem in
(1)–(4) if L and ri can be treated as constants.

Solving the above optimization problem with a general
optimization software can still be rather inefficient in terms



of both processor time and memory usage. Consequently,
we leverage the task compression algorithm to tackle the
challenge of solving the problem efficiently.

Consider the case where D1 + C1
U1

≤ D2. According
to Lemma 4, we only need to check L∗ = D2 for schedu-
lability, which indeed leads to a constant L value in (33).
It follows that we can solve the optimization problem effi-
ciently by using the following theorem.

Theorem 5 Given the constrained optimization problem as
specified in (32)–(36), for L = D2,

∑N
i=1 riUi0 > L −∑N

i=1 Ci, and U1min
≤ U∗

1 < U10, a solution, U∗
i , is opti-

mal if and only if

U∗
i =

{
D2−

∑N

j=1
Cj−
∑N

j=3
rjUj0

D2−D1
: i = 1

Ui0 : otherwise

for D2 >
∑N

j=1 Cj +
∑N

j=3 rjUj0.

Proof: Let Ld = L −∑N
i=1 Ci. The KKT conditions for

the solution to the optimization problem in (32)–(36) can be
written as follows:

0 = −2wi (Ui0 − U∗
i ) + riµ0 − µi + λi (37)

0 = µ0

 N∑
j=1

rjU
∗
j − Ld

 (38)

0 = µi (Uimin
− U∗

i ) (39)

0 = λi (U∗
i − Ui0) (40)

for i = 1, · · · , N , where µ0, µi’s and λi’s are Lagrange
multipliers, µ0 ≥ 0, µi ≥ 0, and λi ≥ 0 for i = 1, · · · , N .

Consider first those tasks with Dk = D2. Then rk =
L − Dk = 0. Now (37) reduces to

µk − λk = −2wk (Uk0 − U∗
k ) (41)

Assume that Ukmin
< U∗

k < Uk0. In order to satisfy (39)
and (40) we must have µk = λk = 0, which contradicts
(41). Now assume that U∗

k = Ukmin
. Then to satisfy (40),

we need λk = 0. However, this leads to µk < 0 from (41),
which violates the KKT conditions. Therefore, for those
tasks with Dk = D2, U∗

k = Uk0. (It can be readily proved
that such a solution indeed satisfies the KKT conditions.)

Consider next those tasks with Dh > D2. In a fashion
similar to the above paragraph, it can be shown that a solu-
tion must have U∗

h = Uh0. We omit the details due to the
space limit. Therefore, a solution to the optimization prob-
lem in (32)–(36) with L = D2 must satisfy U∗

i = Ui0 for
i ≥ 2.

For i = 1, since r1 > 0, it can be readily shown that
there exist µ0 ≥ 0, µ1 ≥ 0, and λ1 ≥ 0 that satisfy (37)–
(40) if U1min

≤ U∗
1 < U10 (otherwise, no feasible solution

exists). Furthermore, constraint (36) must be active. Since
U∗

i = Ui0 for i ≥ 2 in (36), we obtain the value of U∗
1

exactly as defined in Theorem 5. (Details are omitted.)
We have shown that the values of U∗

i as defined in Theo-
rem 5 satisfy the KKT conditions and is a feasible solution
to the problem under consideration. Since the constrained
optimization problem is convex, it follows that this feasible
solution is also the optimal one [22]. �

The above theorem immediately leads to an efficient
algorithm to solve the optimization problem in (32)–(36)
when D1 + T1 ≤ D2. Moreover, Theorem 5 also implies
that if U1 < U1min

then the task set is infeasible.
Let us now consider the case where D1 + T1 > D2. Ac-

cording to Lemma 5, one needs to check whether L∗ =
minN

i=1 (Ti + Di) satisfies (27) to determine feasibility.
Since the value of L∗ may change as Ti changes, the con-
straint in (33) is no longer linear and can greatly increase the
complexity of the optimization problem. Since our aim is to
have an efficient online algorithm, we propose a heuristic to
solve the problem. The following theorem forms the ba-
sis for our heuristic approach. The theorem can be proved
using the KKT conditions as in Lemma 1 and Theorem 1
(see [12] for proof).

Theorem 6 Given the constrained optimization problem
as specified in (32)–(36), for a fixed value of L (where
L = min{Ci

Ui
+ Di},∀i = 1, . . . , N ) and

∑N
i=1 riUi0 >

L − ∑N
i=1 Ci, let R =

∑
U∗

j
�=Ujmin

(r2
j /wj) −∑

U∗
j
=Uj0

(r2
j /wj), and V =

∑
U∗

j
�=Ujmin

rjUj0 − (L −∑N
i=1 Cj)+

∑
U∗

j
=Ujmin

rjUj , a solution, U∗
i , is optimal if

and only if

U∗
i = Ui0 − ri

wiR
· V (42)

for ri > 0 and U∗
i = Ui0, for ri ≤ 0, and 0 < V

R ≤
wi

ri
(Ui0 − Uimin

).

Our proposed algorithm aims to find a feasible solution
to the optimization problem defined in (22)–(25) in an effi-
cient manner. The algorithm adopts an iterative approach.
During iteration h, a set of periods Ti(h) is found and the
algorithm checks to see whether the constraint in (27) is sat-
isfied. If this is the case and if Ti(h) also minimize the ob-
jective function till now, then the algorithm keeps Ti(h) as
the current best solution to the problem. The iterative pro-
cess will terminate when certain stopping criterion is met
(to be discussed later). The solution thus found may not be
optimal but it is guaranteed to be schedulable by the EDF
policy. The detailed algorithm is given in Figure 1.

In each iteration h, we fix the value of L as either
L(h) = D2 if T1(h − 1) + D1 ≤ D2 or L(h) =
minN

i=1(Ti(h − 1) + Di) otherwise. For any task τi whose



Algorithm Task compress deadline(Γ, ∆, maxIter) {
sumC = 0;
for each (τi ∈ Γ) {

sumC = sumC + Ci;
if (sumC > Di)

return NULL; // no feasible solution exists
}

bestObjF = ∞;
for each (τi ∈ Γ) {

prevTi = Timin ;
currTi = Timax ;

}
for (h = 0, h < maxIter, h = h + 1) {

if (D1 + currT1 ≤ D2)
L = D2;

else
L = minN

i=1(currTi + Di);

ri = L − D1;
if (r1 ≤ 0)

Ti = Ti0;
ei = 0;
prevTi = Ti0;
currTi = Ti0;

objF = cns = 0;
for each (τi ∈ Γ) {

objF = objF + 1
ei

(Ui0 − Ci/currTi)
2;

cns = cns +
(

L−Di
currTi

+ 1
)

Ci;

}
if (cns > L) and (h = 0)

return NULL; // no feasible solution can be found
if (cns ≤ L) and (objF < bestObjF ) {

bestObjF = objF ;
for each (τi ∈ Γ)

bestTi = currTi;
}
for each (τi ∈ Γ) {

deltaTi = |currTi − prevTi|;
prevTi = currTi;

}
if deltaTi ≤ ∆, break; //achieved convergence
if (D1 + currT1 ≤ D2) {

Compute currT following Theorem 5;
else

currT = Mod Task compress(Γ, L);
}
return bestT;

}

Figure 1. Period selection alg. for Di < Ti

ri = L(h) − Di ≤ 0, its period is immediately set to Ti0.
For any task τi whose ri > 0, its utilization, Ui(h), can be
determined using Theorem 5 or Theorem 6, respectively. In
the case of L(h) = minN

i=1(Ti(h − 1) + Di), as shown in
Figure 1, Ui is obtained by using a slightly modified task
compression algorithm. (To save space, we omit the mod-
ified task compression algorithm.) The following modifi-
cations were made to the original task compression algo-
rithm: (i) the inputs to the task compression algorithm are
task set Γ and L(h), instead of Γ and Ud, and (ii) the equa-

tion Ui = Ui0− (Uv0 − Ud + Uf ) Ei/Ev in the original al-
gorithm is replaced by (42). For the case where L(h) = D2,
Theorem 5 is applied straightforwardly.

To determine convergence, a user-defined parameter, ∆,
is included as a stopping criterion; if the difference between
Ui found in the current iteration and Ui found in the last it-
eration is smaller than ∆ for all i, the algorithm terminates
and returns the best set of periods it has encountered. To
handle the case where task periods do not converge to some
fixed values (or when it may take too long for the solution to
converge), the algorithm uses another user-defined parame-
ter, maxIter, to limit the maximum number of iterations.

An additional challenge is how to assign the initial
value of L. We propose to set the initial value of L to
minN

i=1(Timax
+ Di). In this way, if the task set is found

to be infeasible, then the algorithm immediately exits since
the task set cannot be made schedulable without violating
the given period bounds. The following lemma serves to
support our choice of the initial value as well as the itera-
tive approach. The proof of the lemma can be found in [12].

Lemma 6 Let Ti for 1 ≤ i ≤ N be a set of periods that
satisfies the constraint in (21). Then the set of T ′

i ≥ Ti also
satisfy the constraint in (21).

The above lemma has two significant consequences.
First, if our algorithm cannot find a feasible solution when
setting L(0) = minN

i=1(Timax
+ Di), it is not fruitful to

continue with the algorithm as any smaller Ti’s would not
satisfy the constraints in (21). Second, to guarantee feasi-
bility, it is advantageous to use larger Ti’s. However, larger
Ti’s tends to increase the objective function. Therefore, by
setting L(h) = minN

i=1(Tih−1 + Di), we hope to achieve a
good balance.

The following theorem states the correctness and com-
plexity of our proposed algorithm. The proof of the theo-
rem follows directly from the lemmas in this and previous
subsections (see [12] for proof).

Theorem 7 Given a set of N periodic tasks with deadlines
less than periods, the algorithm in Figure 1 takes O(N2 ·
maxIter) time to output a set of task periods. Moreover,
if the solution set is non-empty, the task set with the new
periods is guaranteed to be schedulable by the EDF policy.

Finally, with sufficiently small maxIter, the time com-
plexity makes the proposed algorithm suitable for online
period adjustments. In the next section, we will provide
some guidance on how to adjust such user-defined parame-
ters based on experimental results.

5. Experimental results

Here, we present some results to verify the claims made
in the previous sections.
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Figure 2. Utilization perturbation example

5.1. General period selection

To demonstrate that the task compression algorithm
solves the optimization problem in(1)–(4), we reuse the task
set provided in the experimental results section of [9] (re-
produced below in Table 1). The task compression algo-
rithm was written in C++, while MatLab was used to ob-
tain the results for the constrained optimization problems
and the closed-form expression. In this experiment, all

Table 1. Task set parameters used
Task Ci Ti0 Timin

Timax ei

τ1 24 100 30 500 1
τ2 24 100 30 500 1
τ3 24 100 30 500 1.5
τ4 24 100 30 500 2

tasks start at time 0 with an initial period of 100 time units
and the task set is schedulable under EDF. Assume that, at
time 10000, τ1 needs to reduce its period to 33 time units,
perhaps due to some changes in system dynamics not expe-
rienced by other tasks. To allow for τ1 to change its period,
the period of tasks τ2, τ3, and τ4 must increase for the sys-
tem to remain schedulable. At time 20000, τ1 goes back to
its original period. Figures 2 shows the cumulative num-
ber of executed instances for each task as its period changes
over time. First of all, the data verifies that the results ob-
tained from the task compression algorithm and those from
Theorem 1 match perfectly.

Furthermore, it can be seen from the graph that the num-
ber of executed instances of a task is inversely proportional
to its elastic coefficient. Recall that the weight of a task is
the inverse of its elastic coefficient. Although τ2, τ3, and τ4

all have the same computation time, initial period, and pe-
riod range, τ2 is determined to have the smallest (e.g., best)
sampling period because of its weight. On the other hands,
τ4 has the largest sampling period because it is considered to
be of least importance. Due to page limit, we omit the graph
that shows the resultant periods of the same task set, only
this time with the objective of minimizing task periods. The

actual graph can be found in [12]. The results from (17)–
(18) matched those from the closed-from formula presented
in Theorem 2, which verifies our previous claim that both
are indeed equivalent.

5.2. Period selection with additional deadline con-
straints

To approximate the goodness of the algorithm proposed
in Section 4 as compared to the optimal solution, we per-
formed an experiment consisting of 50 randomly generated
task sets 1. Each set contained 5 tasks and was initially un-
schedulable. As before, task computation times and dead-
lines were kept constant.

The proposed algorithm was written in C++, whereas
the optimization problem from (32)–(34) was solved using
Loqo, a non-linear solver. The proposed algorithm found
a convergent set of periods for 43 out of 50 sets. The user-
defined parameters maxIter and ∆ were set to 200 and
1 × 10−10, respectively. The reason why ∆ was so small is
to show that task periods found by the heuristic indeed con-
verged to some fixed values. On the other hand, Loqo only
found an optimal solution to 16 sets provided that a maxi-
mum of 500 iterations were run. We did not allow the solver
to run longer, as, according to [28], it is unlikely that an op-
timal solution will be found after the 100th iteration. Ta-
ble 2 shows the difference in total utilization obtained from
using the proposed algorithm and that from Loqo for the
task sets that were solved optimally by Loqo.

Table 2. Difference in total utilization
Benchmark Iterations needed Total utilization

(Heuristic) difference (%)

2 3 0.000210
7 39 0.000054

10 200+ 8.761857
12 2 0.000023
20 2 0.005683
25 21 5.657413
28 2 0.000099
29 200+ 5.201867
32 17 0.059623
33 200+ 3.088146
37 200+ 0.925411
40 32 0.154522
42 200+ 1.421277
44 49 2.745394
46 4 7.517813
48 2 0.000011

As can be seen by Table 2, 11 task sets are directly com-
parable. In other words, 11 task sets were optimally solved
by Loqo and a convergent set of periods were found by
the algorithm for these same sets. Amongst them, 7 sets
have the same solutions, characterized by a difference of
less than 0.01% in total utilization. The other 4 task sets
were found to have different solutions where the maximum

1The authors thank Bren Mochocki for providing this tool to accom-
plish this step



discrepancy was less than 8%. We suspect that such dis-
crepancy was a result of the algorithm finding a local min-
imizer. Interestingly, for the taks sets that the algorithm
could not find a convergent set of periods, the maximum
difference in utilization was less than 9%.

Based on the above results, it seems that the conver-
gent solution set found by the proposed algorithm is in gen-
eral on par with the optimal solution. In sereral instances,
the heuristic successfully returns a set of feasible solutions
while it was not possible to solve the optimization problem
directly. Since the complexity of the heuritic is lower, the
proposed algorithm is preferable for online period adjust-
ment. Lastly, the experiment suggests that the maximum
number of iterations, maxIter, need not be greater than
100. On the other hands, ∆ can be set to be in the order of
time granularity used by the operating system.

6. Conclusion and future work

In this paper, we created a general framework where
the elastic task model can be treated as a special case.
The framework allows for trade-offs to be viewed as opti-
mizataion problems and for formulating a problem in a sys-
tematic way, making it easier to develop efficient algorithms
to optimize a specific performance measure. As shown in
the paper, the task compression algorithm can not only solve
a QP problem, but also be used as a powerful component of
a heuristic.

Since the algorithm presented in Section 4 is best-effort,
it would be interesting to study whether there exists a way to
select the value of L at every iteration such that the solution
found will always be optimal. Finally, we plan on exploring
different classes of objective functions and constraints that
may be even harder to solve. The case for aperiodic tasks
may be worth investigating, since they impose a different
type of constraints such as response times.
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