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Abstract this paper we focus on the second approach. Some existing

works use optimization theory to solve the period selection
Task period adaptations are often used to alleviate tem- problem for different scheduling algorithms [9], [10], [2]

poral overload conditions in real-time systems, as they per In [4], an online period adjustment mechanism is proposed,
mit performance guarantee. Existing frameworks assumewhile varying task computation times are handled in [6].
that only task periods are adjustable parameters and that An optimal period selection algorithm was proposed in [3]
task deadlines remain unchanged at all times. This paperbased on the elastic task model.
formally introduces a more general real-time task model  Most previous works assume that only task periods can
where task deadlines, which are less than or equal to taskchange. In [11], the deadline of a task varies with time, but
periods, are functions of task periods. This tight coupling tasks do not have periods (i.e., tasks are non-periodia). Ou
between task deadlines and task periods has been discussdist contribution is the introduction of a more general task
in a recent work in control systems and presents a novelmodel where both task deadlines and task periods can vary
real-time scheduling challenge. To solve this period and within some intervals. The deadline in the real-time system
deadline selection problem, this paper presents some analsense really denotes the maximum allowable delay that a
yses in helping to identify feasible period-deadline cambi given task (a control task, for instance) can tolerate. As
nations and proposes a heuristic for finding a schedulable shown by the authors in [12], different sampling rates for a

task set. control system lead to different acceptable maximum delays
(deadlines). Specifically, a smaller sampling rate meaats th
1 Introduction the corresponding control task executes more often, which,

in turns, allows the system to be more tolerant to a larger

Task scheduling has long been an important researchi€lay. Conversely, a larger sampling period would be more
topic in real-time systems. Missing a deadline in a hard susceptible to delays and thus requires a smaller deadline.

real-time system may lead to catastrophic consequences, 'he relationship between task periods and task dead-

such as failure to stop an automatically controlled train on lines poses an interesting Schgdullng prob!em, as one can

time [8]. Although control systems have traditionally been O longer assume that increasing task periods will always

treated as hard real-time systems, they in fact have mordmprove schedulability. Although it is possible to set task_

flexible timing requirements. That is, in general, depegdin d€adlines to the smallest deadlines and only vary task peri-

on the system state, the sampling rate of a control systen?dS, doing so may significantly worsen schedulability. As

can vary within some interval without causing significant ours_,econd c;ontnbutpn, we propose a heunstlc to identify

performance degradation. This observation is very usefu|f_ea5|ble period-deadline combination given that task dead

when temporal overload situations occur. A real-time sys- IN€S are less than or equal to task periods.

tem is said to experience an overload when it cannot finish

executing one or more tasks on time due to resource con2 Preliminaries

straints. Although robust, if too many deadlines are missed

or such misses occur in an unpredictable manner, a controR.1 ~ System Model and Assumptions

system may no longer reach its equilibrium point, even if

all system resources are dedicated to it. We consider a set a¥ periodic tasks with the following
Two main approaches to dealing with overloads are drop- attributes:(C;, T;, Ti0, T5,...., D:), fori = 1,..., N, where

ping some instances of tasks and increasing task periods. IrC; is the worst case execution time of taskandT; is r;'s



actual period, which must lie somewhere betwé&gnand .

T;,.... The parametef;, denotes the most desirable pe- Table 1. Task set for motivating example

riod of ;, as specified by the application, whereis Task| Ci | Tio | T DQZ

represents the maximum period beyond which the system 71 2 ’ 13 | 9- (11 —10)", Ty €[7,13]
performance is no longer acceptable. The param@ies n | 2|7 13 [9— (T2 —10)°, b € [7,13]
the deadline ofr;, and is a function off;. Since we fo-

cus on the case where task deadlines are less than or equal Fqor completeness, we include another existing sufficient

to task periods, we will assume th&t, = f(T;), where,  condition for EDF schedulability.
for [To,T5,,.. ], f(T3) < T;, andf(T;) is some continuous

function. All tasks start at time 0. Theorem 3 [8] A setl’ of N tasks withD; < T;, i =
1,..., N, is schedulable by the EDF policy if

mazx

2.2 Schedulability Test

| o L (4)
We assume that the Earliest Deadline First (EDF) Pl D; —
scheduling algorithm [7] is used. A necessary condition for
schedulability of any given task set is 2.3  Problem Definition
Lemma 1 [5] Let D; be the deadline of task; in a given

task sefl’, i = 1,..., N, and let all tasks start at time 0. Given an initially infeasible sef’ of N real-time
Let the tasks i be ordered in a non-decreasing order of (@Sks where each task has an acceptable period range
deadlines. Regardless of the choices of periods, any task selLimin» Lin..] @nd the deadlind; of 7; is some function

that is schedulable must satisfy the following property of its period f(Z;), determine a period-deadline combina-

tion such that the task sEtbecomes schedulable. In other

J words, we wish to find; such that
i=1 _ X
Z(Lm).ci<L_ZCi (5)

Since task deadlines can be less than or equal to periods, i—1 T; =1
there exists an exact, albeit complex, schedulabilityfast Do . Dy +T, <D,
EDF as specified by Baruah et al [1]. L=9 L (T, + D;) : otherwise (6)
Theorem 1 [1]Given a periodic task set with; < T;, the T, >Tyo fori=1,2,---,N (7)
task set is schedulable if and only if the following constrai T, <T,,.. fori=1,2,---,N (8)
is satisfiedvL € {kT; + D; < min(B,, H)} andk € N
(the set of natural numbers including 0) , whesg and H for D; = f(T3),i = 1,..., N, assuming that tasks are or-
denote the busy period and hyperperiod, respectively, dered in a non-decreasing order of deadlines, and the period

bounds are provided by the applications

Lzéqﬁﬂ +1) ¢ @)

Verifying that (2) is satisfied for alL is the main source of
complexity in the above schedulability test. To reduce the
complexity of the test in Theorem 1, the authors in [5] pro-
posed the following sufficient condition for schedulapilit

3 Motivations

In control systems, an advantage in using the traditional
periodic task model is that the systems can then be treated
as discrete-time systems for which there exists a variety of
mature controller synthesis methods. However, the rasulta
Theorem 2 [5] Given a setl' of N tasks that satisfy task periods and deadlines are often very conservative. Thi
Lemma 1. Let the tasks Inbe sorted in a non-decreasing leads to wasted resources and worsens schedulability. To
order of deadlines. A given task set is schedulable if address these issues, there has been a movement in the con-

N trol system community to focus on an alternative approach

L* — D, to the periodic task model.

L= Z ( T, -+ 1) Ci @) The state-based self triggering control system in [12] is
=1 such an example. Each task determines its own release time
where based on the current system state. Self-triggering can be

viewed as a closed-loop form of releasing tasks for exe-

L* = { D? N ¢ Dit T} < D> cution, whereas the traditional periodic task model is con-
min;Z, (7; + D;) : otherwise sidered open-loop. Since each control task is aware of the




system state, it can dynamically adjust its own period and ¢
deadline. That is, when the period is small, the task is ex- & .
ecuted relatively often and the system is thus more tolerant 7 :
to delays, permitting the deadline to be larger. On the other ¢ .
hand, when the period is large, the system is more suscep s/ .
tible to disturbances, requiring that the deadline be small 4 .
to reduce jitters. 3 1

To understand how the deadline as a function of the pe- 4| ]
riod affects schedulability, let's consider a task set,chihi il ,
consists of two identical tasks whose attributes are shown o ‘ ‘ ‘ ‘ ‘

in Table 1. Figure 1 plots the task deadlines as a function ° ) 7,57, " ” ®
of task periods. Initially, the task set is not schedulable
with 77 = T, = 7 time units, since the initial deadlines Figure 1. Deadline as a function of period

Dy, = Dy, = 0 time units and the aggregate execution
time required is 4 time units. If we simply sgf = 75 = 13 pattern in Figure 2). That is, we sét; , = 22:1 Cj,
time units, which is the maximum allowable periods, then for ; = 1,..., N. If there exist many corresponding pe-
the corresponding deadlines will bg; = D> = 0 time  riod values when the deadline ofis D;, . , we select the
units, as before. The task set is, again, not schedulablgargest period that is no greater thap, ... Such a period
and one can wrongly conclude that the task set cannot bes referred to ag}’,i = 1,..., N.
made feasible. However, there exists many feasible period- We now apply a series of efficient schedulability tests in
deadline combinations; wheéfi = T, = 10 time unitsand  an attempt to find a feasible period-deadline combination.
Dy = Dy = 9 time units, for example. The heuristic starts with the sufficient condition from The-
In the period selection problem, since task deadlines areorem 3. The following lemma helps to explain why only
considered fixed, system designers must use the smallesp, i =1,..., N, need to be considered.
possible deadlines to ensure that given a specific range o
pe_nods, the syst_em will still meet some perfor_mance re- ondition from Theorem 3 is not satisfied oy i —
qguirements. In this example, the smallest deadline for both1 N, then it is not satisfied for angp! < o for
task is O time units, which means that the task set can never.” """’ N ¢
be made schedulable. It is not difficult to see in this exam- "~ ~7"" 2"
ple that the task deadlines can be set to 4 time units for the If a feasible task set has not been identified after having
task set to be feasible, regardless of the resultant perinds ~ applied the condition from Theorem 3, we move on to use
general, however, both task periods and task deadlines musthe schedulability test from Theorem 2 wihy,, ., and7;,
be considered simultaneously. fori =1,..., N, whereT is the period at which the task
deadline is maximum. The following theorem is used to
support this decision.

i_emma 2 Given a sefl” of N tasks, if the schedulability

tmazx?

4 Period-Deadline Selection Problem
Theorem 4 Given a sel of NV tasks and lefl} be the pe-

As shown in the previous section, since a task’s deadlinefiod obtained wheD; = D;, ., for: =1,..., N. Ifthe
is a function of its period, adjusting the period affectstbot ~condition in Theorem 2 is not satisfied for;, . and 77,
the corresponding deadline and the schedulability of theen ¢ = 1,..., N, then it is not satisfied for anp; < D;,,,,
tire task set. Due to the condition in (5), the problem defined andZ; < 77,i=1,...,N.
in Section 2.3 is nonlinear and non-convex. Solving such a  The |eft-slanted region in Figure 2 is a result of Theo-
problem directly using a nonlinear solver is inefficient and yom 4, while the area with no pattern indicates the remaining
it cannot be guaranteed that a solution will be found, even if go5,ch region. The next theorem is essential in identifging

one exists. For these reasons, we propose using a heuristiggytion when all previous, more efficient tests have failed
shown in Algorithm 1, to identify a feasible period-deadlin

combination. Theorem 5 Given a sefl” of N tasks with the deadline of

The heuristic first identifies the minimum and maximum 7 @s @ function of i:[S p.eriod/; and given that the period of
deadlinesD; . andD; ., for each tasks, respectively. ~ 7i €&n vary within[T¥, min (77", 7;,,,, )}, fori = 1,..., N.
The maximum deadline of can directly be solved by find- A f_ea5|ble solut|(_)n to the_ problem defined in (5)—(8) must
ing the maximum off(Z}). While it may seem that the ~Salisfy the following conditions.

minimum deadline ofr; can be derived in a similar man- N N
ner, we use Lemma 1 to help eliminate some infeasible o = 4, Z(L — fU;)-Uj — L+ ch 9)
period-deadline combinations (shown by the right-slanted J=1 i=1



Algorithm 1 FindFeasiblePeriodsDeadlinE%(
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‘min’?
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Tmin

if D;,_ .. > D, . then
return ()
end if
end for

: result «— Zi\il i
if result < 1then

imax

return [D T/],fori=1,...,N

tmax?

cendif
. order tasks in a non-decreasing ordednpf

i=1,...,N
computeL as in (6) usingD;, ... and7/,1 <i < N
result — vazl (% + 1) - C;
if result < L then

return [D
end if
order tasks in a non-decreasing ordefxf
i=1,...,N
computel as in (6) usingD;, . and7!,1<i< N

result «— Zfil (% + 1) -G

if result < L then
return [D

end if

search for a solution using Theorem 5

T!],fori=1,...,N

tmaz?

T!],fori=1,...,N

Tmin?

For notational clarityl/; = C;/T; andU;" = C;/T}" are
used instead of; and T/, respectively. The above theo-

pi(Uj = U;)
= N(U - Uj)

(10)
(11)

Figure 2. Infeasible schedulability regions

this novel task model, we also proposed a heuristic to iden-
tify a schedulable period-deadline combination.
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