
Period and Deadline Selection Problem for Real-Time Systems

Thidapat Chantem and Xiaobo Sharon Hu
Department of Computer Science & Engineering

University of Notre Dame
Notre Dame, IN 46556

{tchantem, shu}@cse.nd.edu

M.D. Lemmon
Department of Electrical Engineering

University of Notre Dame
Notre Dame, IN 46556

lemmon@nd.edu

Abstract

Task period adaptations are often used to alleviate tem-
poral overload conditions in real-time systems, as they per-
mit performance guarantee. Existing frameworks assume
that only task periods are adjustable parameters and that
task deadlines remain unchanged at all times. This paper
formally introduces a more general real-time task model
where task deadlines, which are less than or equal to task
periods, are functions of task periods. This tight coupling
between task deadlines and task periods has been discussed
in a recent work in control systems and presents a novel
real-time scheduling challenge. To solve this period and
deadline selection problem, this paper presents some anal-
yses in helping to identify feasible period-deadline combi-
nations and proposes a heuristic for finding a schedulable
task set.

1 Introduction

Task scheduling has long been an important research
topic in real-time systems. Missing a deadline in a hard
real-time system may lead to catastrophic consequences,
such as failure to stop an automatically controlled train on
time [8]. Although control systems have traditionally been
treated as hard real-time systems, they in fact have more
flexible timing requirements. That is, in general, depending
on the system state, the sampling rate of a control system
can vary within some interval without causing significant
performance degradation. This observation is very useful
when temporal overload situations occur. A real-time sys-
tem is said to experience an overload when it cannot finish
executing one or more tasks on time due to resource con-
straints. Although robust, if too many deadlines are missed
or such misses occur in an unpredictable manner, a control
system may no longer reach its equilibrium point, even if
all system resources are dedicated to it.

Two main approaches to dealing with overloads are drop-
ping some instances of tasks and increasing task periods. In

this paper we focus on the second approach. Some existing
works use optimization theory to solve the period selection
problem for different scheduling algorithms [9], [10], [2].
In [4], an online period adjustment mechanism is proposed,
while varying task computation times are handled in [6].
An optimal period selection algorithm was proposed in [3]
based on the elastic task model.

Most previous works assume that only task periods can
change. In [11], the deadline of a task varies with time, but
tasks do not have periods (i.e., tasks are non-periodic). Our
first contribution is the introduction of a more general task
model where both task deadlines and task periods can vary
within some intervals. The deadline in the real-time system
sense really denotes the maximum allowable delay that a
given task (a control task, for instance) can tolerate. As
shown by the authors in [12], different sampling rates for a
control system lead to different acceptable maximum delays
(deadlines). Specifically, a smaller sampling rate means that
the corresponding control task executes more often, which,
in turns, allows the system to be more tolerant to a larger
delay. Conversely, a larger sampling period would be more
susceptible to delays and thus requires a smaller deadline.

The relationship between task periods and task dead-
lines poses an interesting scheduling problem, as one can
no longer assume that increasing task periods will always
improve schedulability. Although it is possible to set task
deadlines to the smallest deadlines and only vary task peri-
ods, doing so may significantly worsen schedulability. As
our second contribution, we propose a heuristic to identifya
feasible period-deadline combination given that task dead-
lines are less than or equal to task periods.

2 Preliminaries

2.1 System Model and Assumptions

We consider a set ofN periodic tasks with the following
attributes:(Ci, Ti, Ti0, Timax

,Di), for i = 1, . . . , N , where
Ci is the worst case execution time of taskτi, andTi is τi’s

1



actual period, which must lie somewhere betweenTi0 and
Timax

. The parameterTi0 denotes the most desirable pe-
riod of τi, as specified by the application, whereasTimax

represents the maximum period beyond which the system
performance is no longer acceptable. The parameterDi is
the deadline ofτi, and is a function ofTi. Since we fo-
cus on the case where task deadlines are less than or equal
to task periods, we will assume thatDi = f(Ti), where,
for [Ti0, Timax

], f(Ti) ≤ Ti, andf(Ti) is some continuous
function. All tasks start at time 0.

2.2 Schedulability Test

We assume that the Earliest Deadline First (EDF)
scheduling algorithm [7] is used. A necessary condition for
schedulability of any given task set is

Lemma 1 [5] Let Di be the deadline of taskτi in a given
task setΓ, i = 1, . . . , N , and let all tasks start at time 0.
Let the tasks inΓ be ordered in a non-decreasing order of
deadlines. Regardless of the choices of periods, any task set
that is schedulable must satisfy the following property

j
∑

i=1

Ci ≤ Dj , j = 1, . . . , N (1)

Since task deadlines can be less than or equal to periods,
there exists an exact, albeit complex, schedulability testfor
EDF as specified by Baruah et al [1].

Theorem 1 [1]Given a periodic task set withDi ≤ Ti, the
task set is schedulable if and only if the following constraint
is satisfied∀L ∈ {kTi + Di ≤ min(Bp,H)} and k ∈ N
(the set of natural numbers including 0) , whereBp andH
denote the busy period and hyperperiod, respectively,

L ≥
N

∑

i=1

(⌊

L−Di

Ti

⌋

+ 1

)

Ci (2)

Verifying that (2) is satisfied for allL is the main source of
complexity in the above schedulability test. To reduce the
complexity of the test in Theorem 1, the authors in [5] pro-
posed the following sufficient condition for schedulability.

Theorem 2 [5] Given a setΓ of N tasks that satisfy
Lemma 1. Let the tasks inΓ be sorted in a non-decreasing
order of deadlines. A given task set is schedulable if

L∗ ≥
N

∑

i=1

(

L∗ −Di

Ti

+ 1

)

Ci (3)

where

L∗ =

{

D2 : D1 + T1 ≤ D2

minN
i=1

(Ti + Di) : otherwise

Table 1. Task set for motivating example
Task Ci Ti0 Timax

Di

τ1 2 7 13 9− (T1 − 10)
2, T1 ∈ [7, 13]

τ2 2 7 13 9− (T2 − 10)
2, T2 ∈ [7, 13]

For completeness, we include another existing sufficient
condition for EDF schedulability.

Theorem 3 [8] A setΓ of N tasks withDi ≤ Ti, i =
1, . . . , N , is schedulable by the EDF policy if

N
∑

i=1

Ci

Di

≤ 1 (4)

2.3 Problem Definition

Given an initially infeasible setΓ of N real-time
tasks where each taskτi has an acceptable period range
[Timin

, Timax
] and the deadlineDi of τi is some function

of its periodf(Ti), determine a period-deadline combina-
tion such that the task setΓ becomes schedulable. In other
words, we wish to findTi such that

N
∑

i=1

(

L− f(Ti)

Ti

)

· Ci ≤ L−
N

∑

i=1

Ci (5)

L =

{

D2 : D1 + T1 ≤ D2

min (Ti + Di) : otherwise
(6)

Ti ≥ Ti0 for i = 1, 2, · · · , N (7)

Ti ≤ Timax
for i = 1, 2, · · · , N (8)

for Di = f(Ti), i = 1, . . . , N , assuming that tasks are or-
dered in a non-decreasing order of deadlines, and the period
bounds are provided by the applications

3 Motivations

In control systems, an advantage in using the traditional
periodic task model is that the systems can then be treated
as discrete-time systems for which there exists a variety of
mature controller synthesis methods. However, the resultant
task periods and deadlines are often very conservative. This
leads to wasted resources and worsens schedulability. To
address these issues, there has been a movement in the con-
trol system community to focus on an alternative approach
to the periodic task model.

The state-based self triggering control system in [12] is
such an example. Each task determines its own release time
based on the current system state. Self-triggering can be
viewed as a closed-loop form of releasing tasks for exe-
cution, whereas the traditional periodic task model is con-
sidered open-loop. Since each control task is aware of the

2



system state, it can dynamically adjust its own period and
deadline. That is, when the period is small, the task is ex-
ecuted relatively often and the system is thus more tolerant
to delays, permitting the deadline to be larger. On the other
hand, when the period is large, the system is more suscep-
tible to disturbances, requiring that the deadline be smaller
to reduce jitters.

To understand how the deadline as a function of the pe-
riod affects schedulability, let’s consider a task set, which
consists of two identical tasks whose attributes are shown
in Table 1. Figure 1 plots the task deadlines as a function
of task periods. Initially, the task set is not schedulable
with T1 = T2 = 7 time units, since the initial deadlines
D10

= D20
= 0 time units and the aggregate execution

time required is 4 time units. If we simply setT1 = T2 = 13
time units, which is the maximum allowable periods, then
the corresponding deadlines will beD1 = D2 = 0 time
units, as before. The task set is, again, not schedulable
and one can wrongly conclude that the task set cannot be
made feasible. However, there exists many feasible period-
deadline combinations; whenT1 = T2 = 10 time units and
D1 = D2 = 9 time units, for example.

In the period selection problem, since task deadlines are
considered fixed, system designers must use the smallest
possible deadlines to ensure that given a specific range of
periods, the system will still meet some performance re-
quirements. In this example, the smallest deadline for both
task is 0 time units, which means that the task set can never
be made schedulable. It is not difficult to see in this exam-
ple that the task deadlines can be set to 4 time units for the
task set to be feasible, regardless of the resultant periods. In
general, however, both task periods and task deadlines must
be considered simultaneously.

4 Period-Deadline Selection Problem

As shown in the previous section, since a task’s deadline
is a function of its period, adjusting the period affects both
the corresponding deadline and the schedulability of the en-
tire task set. Due to the condition in (5), the problem defined
in Section 2.3 is nonlinear and non-convex. Solving such a
problem directly using a nonlinear solver is inefficient and
it cannot be guaranteed that a solution will be found, even if
one exists. For these reasons, we propose using a heuristic,
shown in Algorithm 1, to identify a feasible period-deadline
combination.

The heuristic first identifies the minimum and maximum
deadlines,Dimin

andDimax
, for each taskτi, respectively.

The maximum deadline ofτi can directly be solved by find-
ing the maximum off(Ti). While it may seem that the
minimum deadline ofτi can be derived in a similar man-
ner, we use Lemma 1 to help eliminate some infeasible
period-deadline combinations (shown by the right-slanted

Figure 1. Deadline as a function of period

pattern in Figure 2). That is, we setDimin
=

∑i

j=1
Cj ,

for i = 1, . . . , N . If there exist many corresponding pe-
riod values when the deadline ofτi is Dimin

, we select the
largest period that is no greater thanTimax

. Such a period
is referred to asT ′′

i , i = 1, . . . , N .
We now apply a series of efficient schedulability tests in

an attempt to find a feasible period-deadline combination.
The heuristic starts with the sufficient condition from The-
orem 3. The following lemma helps to explain why only
Dimax

, i = 1, . . . , N , need to be considered.

Lemma 2 Given a setΓ of N tasks, if the schedulability
condition from Theorem 3 is not satisfied forDimax

, i =
1, . . . , N , then it is not satisfied for anyD′

i < Dimax
, for

i = 1, . . . , N .

If a feasible task set has not been identified after having
applied the condition from Theorem 3, we move on to use
the schedulability test from Theorem 2 withDimax

andT ′

i ,
for i = 1, . . . , N , whereT ′

i is the period at which the task
deadline is maximum. The following theorem is used to
support this decision.

Theorem 4 Given a setΓ of N tasks and letT ′

i be the pe-
riod obtained whenDi = Dimax

, for i = 1, . . . , N . If the
condition in Theorem 2 is not satisfied forDimax

and T ′

i ,
i = 1, . . . , N , then it is not satisfied for anyDi < Dimax

andTi ≤ T ′

i , i = 1, . . . , N .

The left-slanted region in Figure 2 is a result of Theo-
rem 4, while the area with no pattern indicates the remaining
search region. The next theorem is essential in identifyinga
solution when all previous, more efficient tests have failed.

Theorem 5 Given a setΓ of N tasks with the deadline of
τi as a function of its period, and given that the period of
τi can vary within[T ′

i ,min (T ′′

i , Timax
)], for i = 1, . . . , N .

A feasible solution to the problem defined in (5)–(8) must
satisfy the following conditions.

0 = µ0





N
∑

j=1

(L− f(Uj)) · Uj − L +

N
∑

j=1

Cj



 (9)

3



Algorithm 1 FindFeasiblePeriodsDeadlines(Γ)
1: for eachτi ∈ Γ do
2: Dimax

← max
Ti∈[Timin

,Ti0] f(Ti)

3: T ′

i ← period when deadline isDimax

4: Dimin
←

∑i

j=1
Cj

5: T ′′

i ← period when deadline isDimin

6: if Dimin
> Dimax

then
7: return ∅
8: end if
9: end for

10: result ←
∑N

i=1

Ci

Dimax

11: if result ≤ 1 then
12: return [Dimax

, T ′

i ], for i = 1, . . . , N
13: end if
14: order tasks in a non-decreasing order ofDimax

i = 1, . . . , N
15: computeL as in (6) usingDimax

andT ′

i , 1 ≤ i ≤ N

16: result ←
∑N

i=1

(

L−Dimax

T ′

i

+ 1
)

· Ci

17: if result ≤ L then
18: return [Dimax

, T ′

i ], for i = 1, . . . , N
19: end if
20: order tasks in a non-decreasing order ofDimin

i = 1, . . . , N
21: computeL as in (6) usingDimin

andT ′′

i , 1 ≤ i ≤ N

22: result ←
∑N

i=1

(

L−Dimin

T ′′

i

+ 1
)

· Ci

23: if result ≤ L then
24: return [Dimin

, T ′′

i ], for i = 1, . . . , N
25: end if
26: search for a solution using Theorem 5

0 = µi(U
′′

i − Ui) (10)

0 = λi(Ui − U ′

i) (11)

For notational clarity,U ′

i = Ci/T ′

i andU ′′

i = Ci/T ′′

i are
used instead ofT ′

i andT ′′

i , respectively. The above theo-
rem is a direct consequence of applying the Karush-Kuhn-
Tucker conditions to the problem defined in Section 2.3.
The above theorem can be used to identify a feasible task
set during the search. The best search algorithm for the pe-
riod and deadline selection problem is currently under in-
vestigation.

5 Conclusions

We introduced a more general real-time task model
where each task deadline is a function of the corresponding
period. This requirement is directly derived from control
systems where the deadlines reflect the maximum allowable
delays as tolerated by a given system and vary according to
the sampling periods. Since existing schedulability condi-
tions cannot adequately be used to determine feasibility for

Figure 2. Infeasible schedulability regions

this novel task model, we also proposed a heuristic to iden-
tify a schedulable period-deadline combination.

References

[1] S. Baruah, L. Rosier, and R. Howell. Algorithms and
complexity concerning the preemptive scheduling of peri-
odic, real-time tasks on one processor.Real-Time Systems,
2(4):301–324, Nov. 1990.

[2] E. Bini and M. D. Natale. Optimal task rate selection in fixed
priority systems. InProc. Real-Time Systems Symposium,
pages 399–409, 2005.

[3] G. Buttazzo, G. Lipari, and L. Abeni. Elastic task model for
adaptive rate control. InProc. Real-Time Systems Sympo-
sium, pages 286–295, 1998.

[4] A. Cervin, J. Eker, B. Bernhardsson, and K.-E.Årźen.
Feedback-feedforward scheduling of control tasks.Real-
Time Systems, 23(1):25–53, July 2002.

[5] T. Chantem, X. Hu, and M. Lemmon. Generalized elastic
scheduling. InProc. Real-Time Systems Symposium, pages
236–245, 2006.

[6] X. Koutsoukos, R. Tekumalla, B. Natarajan, and C. Lu. Hy-
brid supervisory utilization control of real-time systems. In
Proc. Real-Time & Embedded Technology and Applications
Symposium, pages 12–21, 2005.

[7] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard real-time environment.Journal of the
ACM, 20(1):46–61, Jan. 1973.

[8] J. W. S. Liu.Real-Time Systems. Prentice-Hall, NJ, 2000.
[9] D. Seto, J. Lehoczky, and L. Sha. Task period selection and

schedulability in real-time systems. InProc. Real-Time Sys-
tems Symposium, pages 188–199, 1998.

[10] D. Seto, J. Lehoczky, L. Sha, and K. Shin. On task schedula-
bility in real-time control systems. InProc. Real-Time Sys-
tems Symposium, pages 13–21, 1996.

[11] C.-S. Shih and J. W. Liu. State-dependent deadline schedul-
ing. In Proc. Real-Time Systems Symposium, pages 3–14,
2002.

[12] X. Wang and M. Lemmon. Self-triggered feedback control
systems with finite-gain l2 stability.Submitted to Transac-
tions on Automatic Control, 2007.

4


