
Network-Aware, Energy-Conscious, Fair Service
for Real-Time Applications on Multiprocessor SoC∗

Thidapat Chantem†, X. Sharon Hu†, Christian Poellabauer†, Jun Yi† and Liqiang Zhang‡

†Department of CSE
University of Notre Dame

Notre Dame, IN 46556
{tchantem, shu, cpoellab, jyi}@cse.nd.edu

‡Department of CIS
Indiana University South Bend

South Bend, IN 46634
liqzhang@iusb.edu

Abstract

We consider systems consisting of wireless nodes that ex-
ecute CPU intensive applications on multiprocessor system-
on-a-chip (MPSoC) and must transmit packets over the net-
work in a timely manner. Existing methods do not consider
packet deadlines in conjunction with energy and real-time
task performance, making it hard to predict system behav-
ior. We present an energy-aware adaptive CPU scheduling
algorithm to maximize the number of packet deadlines met
in a fair manner and discuss future work.

1 Introduction and Related Work

Wireless networks are now common in a variety of ap-
plications, e.g., [3, 5]. While many wireless sensor nodes
typically require minimum hardware to perform lightweight
tasks (e.g., periodically waking up to sense and transmit
data), powerful processing nodes can also be found in cer-
tain applications for executing computationally intensive
tasks and transmitting packets over the network. Example
applications are surveillance and mobile gaming systems.
In a surveillance system, a wireless node periodically cap-
tures a video, processes the frames and transmits them to
clients. As for the gaming system, the processor is kept
busy with a large number of tasks (e.g., rendering graphics)
while a large amount of data is sent to the user’s opponents.

To cater to the high computing demand imposed by
the applications mentioned above, one alternative is to use
high-end, power-hungry, processors. Since wireless nodes
are generally battery powered, to save energy and prolong
the lifetime of these nodes, multiprocessor system-on-chips
(MPSoCs) present a better alternative for wireless nodes
requiring higher computational power. More work can be
completed by running processor cores in parallel at lower

∗This work is supported in part by NSF under grant numbers CNS-
0834180 and CNS-0834230.

voltage and frequency, thus saving energy. The parallel ex-
ecution capabilities of such MPSoC-based wireless nodes,
however, introduces new challenges in terms of reducing
energy consumption while satisfying real-time constraints.

There is a large research body on energy minimization in
multiprocessors running real-time applications, e.g., [1, 2],
though the majority of the work solely focuses on optimiz-
ing real-time task performance without any consideration
for packet deadlines. Meeting packet deadlines is important
in ensuring performance requirements such as data fresh-
ness. At the same time, network-aware work usually fo-
cuses on trading network energy with packet latency us-
ing packet scheduling and ignores task deadlines [7, 8]. To
the best of our knowledge, the work by Yi et al. is the
only energy-aware solution that explicitly considers packet
deadlines on uniprocessor architectures executing real-time
tasks [9]. However, it is unclear how the proposed solution
may extend to multiprocessor architectures. Additionally,
in the approach of [9], it is difficult, if not impossible, to
predict which packets will miss their deadlines. This could
lead to unfairness in packet transmission. That is, some
tasks may consistently be able to successfully transmit their
packets while the packets of other tasks starve.

In this work, we design an adaptive CPU scheduling al-
gorithm that maximizes the number of packets that meet
their deadlines in a fair manner. Fairness is used to ensure
that each task has an adequate number of successfully trans-
mitted packets relative to their importance. The main idea
of our work is to prevent executions of jobs whose packets
will be dropped to save CPU energy while allowing spe-
cific packets to be sent. Using a network reservation-based
approach in [9], network energy is also managed.

2 Preliminaries

We consider a set of n independent periodic real-time
tasks. Each task τi is described by its worst-case execution

1

time Ci and period Ti. All tasks are synchronous. The j-
th instance (job) of task τi is denoted by τi,j . We assume a
partitioned scheduling approach in which tasks are assigned
to their respective cores using the algorithm in [2] and that
the tasks on each core are schedulable using the algorithm
in [6]. No job or task migration is allowed.

Two types of tasks are considered: packet-generating
and non packet-generating. Non packet-generating tasks are
hard real-time tasks. Without loss of generality, we assume
that every job of packet-generating tasks generates a packet
at the end of its execution. Packets have firm real-time
deadlines, i.e., they must be transmitted by their deadline
or they will be dropped. Packets from different instances of
the same task are equal in size while packets from differ-
ent tasks may vary in size. A packet Pj is described by its
deadline Xj and worst-case transmission time Zj .

The MPSoC consists of m homogeneous cores, each of
which can run at k discrete speed levels. Cores can indepen-
dently change speed. We assume that transition overheads
associated with switching from one speed to another have
been included in the task worst-case execution times.

The processor cores share a network card. Packets
are transmitted in an earliest-deadline first (EDF) man-
ner. Transmissions are preemptable at some minimum unit.
Since packets that cannot meet their deadlines are dropped,
the number of packets transmitted is used interchangeably
with the number of packets that meet their deadlines.

Each node uses TDMA-like periodic time slots to send
and receive packets. No network communication takes
place outside of these time slots. The time slots, described
by a period Tts and length Cts , may change over time to
reflect different network usage levels. We assume that in-
coming packets are buffered at the sender and arrive at the
beginning of each time slots during which the wireless node
avoids transmitting any packets.

We are interested in solving the following problem:
Given the real-time task set, MPSoC, network card and
transmission models described above, determine an exe-
cution pattern for packet-generating jobs such that all non
packet-generating jobs meet their deadlines, the number of
packets transmitted over the network is maximized in a fair
manner, and the energy consumption is minimized.

3 Motivations

We use a simple example to motivate our problem. As-
sume that we have a set of four tasks as shown in Table 1. In
addition, our MPSoC consists of four identical cores, m1,
m2, m3, and m4. Using the approximation algorithm in [2],
each core is assigned a task to execute.

For this example, we assume that jobs always require
their worst-case execution times, that cores can adjust their
speeds in a continuous manner, and that the network card is

Table 1. Example Task Set
Task C T Packet? X Z
τ1 1 2 Yes T + 1 0.5
τ2 1 3 Yes T + 2 1
τ3 2 6 Yes T + 2.3 1
τ4 3 12 Yes T + 2.3 1

allowed to transmit packets whenever it wishes. It must be
noted, however, that these assumptions are made for ease
of explanation and that we do not rely on any such assump-
tion to solve our general problem. Using LaEDF [6], each
job finishes its execution right before its deadline. The cor-
responding processor and network card states are shown in
Figures 1(a) and 1(b), respectively.

As shown in Figure 1(b), no packets generated by tasks
τ3 and τ4 were transmitted. This is unfair because all pack-
ets generated by tasks τ1 and τ2 were sent. What is worse,
the same pattern will persist to the future, which means that
packets generated by τ3 and τ4 will never be transmitted and
the energy used to execute instances of τ3 and τ4 is wasted.

Now, suppose that we had a mechanism to select jobs
to execute in a fair manner. The resultant MPSoC and net-
work card state might be as shown in Figures 2(a) and 2(b),
respectively. The total number of packets transmitted does
not change but some packets generated by τ3 and τ4 can
now be transmitted. In addition, the CPU does not waste
energy executing jobs whose packets are not transmitted.

4 Network-Aware Adaptive CPU Scheduling

We provide our general approach, discuss the fairness
metric, and give a detailed explanation of our algorithm.

4.1 Overview

The main component of our algorithm is the manager
task (MT), which runs on one of the cores, is a periodic
task, and competes for resource. Let us define an obser-
vation window (ObsWin) to be the least common multiple
of the task hyperperiod and Tts . In an ObsWin, the network
card monitors the packet transmission pattern and sends this
information to the MT, which will then use it to compute the
current system fairness level. The MT also compiles a list
of tasks whose packets are being transmitted more than it
should and send it to the cores. In the next ObsWin, the
scheduler on each core avoids executing jobs of these tasks
during high interference time intervals (defined below), thus
allowing packets from other tasks to be transmitted.

Since cores execute jobs using dynamic voltage scal-
ing (DVS) and some jobs are dropped, processor energy is
saved. At the same time, since these jobs are dropped in a
controlled manner, packets will be transmitted fairly. Note

2

τ1,1 τ1,2 τ1,3 τ1,4 τ1,5 τ1,6

τ2,1 τ2,2 τ2,3 τ2,4

τ3,1 τ3,2

τ4,1

m1

m2

m3

m4

2 4 6 8 10 12 0

0

0

0

6

6

12

12

12

3 9

(a) Processor state.

2 4 6 8 10 12 0 3 9

1,1 1,2 1,3 1,4 1,5 1,6 2,1 2,2 2,3 2,4

NET

(b) Network state, each box indicates packet by τi,j is transmitted.

Figure 1. System state without network-
aware scheduling.

that we focus on CPU energy and not network energy, as
the network energy has already been managed during the
negotiation of the periodic time slots [9].

Our algorithm is adaptive in the sense that it may take a
number of ObsWins for the packet transmission pattern to
stabilize. However, the system can perform exactly as it has
in the previous ObsWin once this is the case until, say, a
new task joins the system or the period or length of the time
slot changes. In such cases, the MT is reactivated until the
system stabilizes yet again.

4.2 Fairness Metric

Although our algorithm is independent of the specific
fairness metric used, we use Jain’s fairness index [4] to mea-
sure system fairness level in this work. Jain’s fairness index
F can be defined as follows.

F =

(∑
τi∈G(wiλi)

)2

|G| ·
∑

τi∈G(wiλi)2
≤ 1 (1)

where wi is the weight of task τi, G is the set of packet-
generating tasks, and λi denotes the packet deadline meet
ratio of packet-generating task τi.

4.3 Algorithm Details

The relevant parts of our proposed algorithm are shown
in Algorithm 1, with checkpoints omitted for brevity.

To observe the original system behavior during the first
ObsWin (e.g., where packet deadline misses occur, if any),
all jobs are executed using LaEDF and the network card
transmits as many packets as possible while keeping track
of the deadline miss ratios λ, as well as HT, which is a list

τ1,1 τ1,2 τ1,4 τ1,5

τ2,1 τ2,3

τ3,1 τ3,2

τ4,1

m1

m2

m3

m4

2 4 6 8 10 12 0

0

0

0

6

6

12

12

12

3 9

(a) Processor state.

2 4 6 8 10 12 0 3 9

1,1 1,2 1,4 1,5 2,1 3,1 2,3 3,2

NET

4,1

(b) Network state.

Figure 2. System state with network-aware
scheduling.

of high interference time intervals [ts, te] where ts is the re-
lease time of a packet whose deadline is missed and te is its
deadline. If there is no packet deadline miss, our algorithm
is not activated and the system continues as before.

Using λ, the MT computes F as in (1). The objective of
the MT is to improve the system fairness level by identify-
ing tasks which have had an unfair access to the network.
That is, we wish to reduce the number of packets transmit-
ted by such tasks so that the number of packets transmit-
ted by other tasks (which have been disadvantaged) can be
increased. Specifically, we use two embedded loops that
iterate through packet-generating tasks, one following the
non-increasing order of meet ratios and the other in reverse.
The goal is to find pairs of tasks, one with a higher meet ra-
tio and another with a lower meet ratio, whose packets will
likely interfere with one another. The MT then determines
how the system fairness level will change should the num-
ber of packets of the task with a higher (lower) meet ratio
is decreased (increased) by one. If the system fairness level
will increase, the task with the higher meet ratio is added
to the set TL, which will be used by the scheduler on each
core to determine which jobs to drop.

As for the scheduler on each core, its only duty is to
determine whether to execute the next ready job. This is
accomplished by examining whether the associated task of
the current job appears in TL and determining whether the
job deadline falls within one of the high interference time
intervals. Here, the idea is to balance energy consumption
with useful work completed by the processor cores.

5 Summary and Future Work

We proposed an energy-aware adaptive CPU scheduling
algorithm to maximize the number of packets transmitted

3

Algorithm 1 Energy-Aware Adaptive CPU Scheduling
Upon end of each ObsWin

if at least one packet missed its deadline then
execute MT with λ and HT from network card

Upon each execution of MT
compute F // current fairness level of system
R ← packet-generating tasks sorted in a non-increasing
order of wλ
R′ ← inverse(R)
for each task τi ∈ R do

λi ← num packets transmittedi−1
num packets generatedi

for each task τj in R′ do
if τi.deadline and τj .deadline ∈ HT then

λj ←
num packets transmittedj+1

num packets generatedj

compute F ′ // using new values for λi and λj

if F ′ > F then
TL← TL ∪ τi

F ← F ′

send TL(m) and HT (m) to m, for all cores m
Upon each scheduling point on core m

j ← next ready job // using LaEDF
if j.deadline ∈ HT and j.getTask ∈ TL then

drop j

over the network in a fair manner for real-time applications
running on MPSoCs. Our algorithm is independent of the
fairness metric used and requires minimum interactions be-
tween the network card and the processor cores.

As this work is ongoing, there are still many improve-
ments to be made and several challenges to be solved. For
instance, the observation window is currently defined to be
the least common multiple of the task hyperperiod and Tts.
While this definition of ObsWin allows the MT to easily de-
termine which jobs should not execute and when, the actual
length of ObsWin in practice may be too large since it is a
function of the task hyperperiod. Using a large ObsWin has
several drawbacks. For instance, changes may take place
very slowly, prohibiting the system from responding to dy-
namic perturbations in a timely manner. Also, a long Ob-
sWin entails that the size of HT will be large, requiring
a large amount of memory space and causing long latency
when executing our algorithm.

In the current version of the algorithm, some jobs are
dropped even if their packets may in reality not interfere
with the other packets because of the high variation in job
execution times. In other words, the current algorithm may
too aggressively drop jobs. A heuristic is needed to deter-
mine whether such jobs should be executed based on their
expected execution times and network state. Also, job mi-
gration may help to further improve the system fairness
level, as well as energy saving, and is worth exploring.

An implicit philosophy behind the proposed algorithm
is the minimization of the interactions between the network
card and processor cores, as a constant update from the net-
work card regarding its status can incur unacceptable over-
heads. However, due to the lack of constant communica-
tions, the cores do not have full knowledge of the network
state, which could greatly help in improving performance.
At the same time, the use of the MT requires that both TL
and HT be shared, possibly via cache. This means that our
algorithm may require that the memory management unit
arbitrates the access of these shared information (and possi-
bly causing delays in some job executions when the MT is
executing). Determining the “right” amount of status update
from the network card and the best way to share information
among cores are subject to ongoing investigation.

Finally, once all the above challenges have been ad-
dressed, we plan on evaluating our work against the work
in [9] for uniprocessor architectures and against the state-
of-the-art energy-aware algorithm that does not consider
packet deadlines for MPSoC cases.

References

[1] H. Aydin and Q. Yang. Energy-aware partitioning for mul-
tiprocessor real-time systems. In Proc. of the Int. Symp. on
Parallel and Distributed Processing, page 113.2, Apr. 2003.

[2] J.-J. Chen, C.-Y. Yang, H.-I. Lu, and T.-W. Kuo. Approxima-
tion algorithms for multiprocessor energy-efficient schedul-
ing of periodic real-time tasks with uncertain task execution
time. In Proc. of the Real-Time and Embedded Technology
and Applications Symp., pages 13–23, Apr. 2008.

[3] T. H. et al. VigilNet: An integrated sensor network system
for energy-efficient surveillance. Trans. on Sensor Networks,
2(1):1–38, Feb. 2006.

[4] R. Jain, D. Chiu, and W. Hawe. A quantitative measure of
fairness and discrimination for resource allocation in shared
computer systems. Technical report, DEC Research Report,
1984.

[5] A. Mainwaring, J. Polastre, R. S. D. Culler, and J. Anderson.
Wireless sensor networks for habitat monitoring. In Proc. of
the Int. Workshop on Wireless Sensor Networks and Applica-
tions, pages 88–97, Sept. 2002.

[6] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling
for low-power embedded operating systems. Operating Sys-
tems Review, 35(5):89–102, Oct. 2001.

[7] V. Raghunathan, S. Ganeriwal, C. Schurgers, and M. Srivas-
tava. E2WFQ: An Energy Efficient Fair Scheduling Policy for
Wireless Systems. In Proc. of the Int. Symp. on Low Power
Electronics & Design, page 30.

[8] E. Uysal-Biyikoglu, B. Prabhakar, and A. E. Gamal. Energy-
efficient packet transmission over a wireless link. Trans. on
Networking, 10(4):487–499, Aug. 2002.

[9] J. Yi, C. Poellabauer, X. Hu, J. Simmer, and L. Zhang.
Energy-conscious co-scheduling of tasks and packets in wire-
less real-time environments. In Proc. of the Real-Time and
Embedded Technology and Applications Symp., pages 265–
274, Apr. 2009.

4

