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Abstract—We consider wireless real-time systems that execute
computationally-intensive applications and must transmit packets
over the network in a timely manner. Existing methods do not
consider the importance (i.e., urgency) of a packet as perceived by
end users in conjunction with energy consumption, real-time task
deadlines, and packet deadlines, inadvertently causing packet
priority inversion during transmissions and possibly starvation
of some streams. We present an online holistic scheduling frame-
work that explicitly considers packet importance to select packets
to transmit and guarantee their deadline requirements using both
packet and energy-aware job assignment and scheduling. Our
framework is applicable to wireless real-time systems equipped
with either a single processor or a multicore system. Based on
extensive simulations, we show that our proposed method allows
for timely transmissions of the most important packets, which
helps to control packet urgency, while saving processor(s) energy.

I. INTRODUCTION

Wireless networks are now common in a variety of appli-
cations such as habitat monitoring [14] and surveillance [6].
While many wireless sensor systems typically require mini-
mum hardware to perform lightweight tasks (e.g., periodically
waking up to sense and transmit data), powerful processing
nodes can be found in certain applications for executing com-
putationally intensive tasks and transmitting packets over the
network. Some typical example applications are surveillance
and mobile gaming systems. Typically, the performance focus
of such systems is the quality of service (QoS) perceived by
end users. For example, in a surveillance system, if an intruder
enters a premise, it is crucial that not only the equipment
captures the intruder on tape, but also that the information is
sent to appropriate personnel in a timely manner so necessary
actions can be taken. Similarly, gamers in a shooting game
would want to see what their opponents are attempting to do
from their screen within a certain time window.

For the types of systems described above, due to the time-
sensitive nature of these systems, they are usually implemented
using real-time tasks, which generate packets to be transmit-
ted over the network. These packets, in turn, often contain
time-sensitive materials. To ensure timely packet delivery,
high channel utilization, and/or energy efficiency, the system
may employ reservation-based channel access protocols, with
which they have periodic access to send and receive packets.
The time and duration of access may depend on current
network conditions (e.g., less often if there are many nodes in

the network). Finally, energy consumption of these wireless
systems must be minimized since only occasional battery
recharge may be possible.

The main problem with the usual implementation of the
systems under consideration is that the decision to execute
tasks and transmit packets are made independently and chang-
ing requirements are not communicated. Specifically, since a
node’s access to the network may sometimes be limited (due to
event storms in sensor networks, high levels of interferences,
and varying degrees of network density, for example), fewer
packets can be transmitted during that time. While the network
scheduler can select the most important packets to send first,
the task scheduler, unaware of the situation, may not execute
tasks that generate these important packets until later (e.g.,
when the node no longer has network access).

There is a large body of research on energy minimization
for real-time applications, both for uniprocessors (e.g., [18],
[24]) and multiprocessors (e.g., [1], [2], [4]). The majority of
the work solely focuses on optimizing real-time task perfor-
mance without any consideration for packet deadlines. At the
same time, network-aware work usually focuses on trading
network energy with packet latency using packet scheduling
and ignores task deadlines, e.g., [12], [21]. The problem
of energy-aware scheduling of multiple components has been
studied in the past, e.g., [7]. The most relevant papers propose
some type of network-aware energy-minimization algorithms
for real-time task scheduling [15], [19], which are still task-
centric in that packet deadlines are not explicitly considered.

To the best of our knowledge, the work by Yi et al. is
the only energy-aware solution that explicitly considers packet
deadlines for systems executing real-time tasks [25]. However,
this approach treats each packet as equally important, possibly
resulting in scenarios where some tasks consistently get their
packets transmitted while the packets of other tasks starve. In
addition, it is unclear whether or how the work in [25] can be
extended to multiprocessor architectures.

One way to ensure that both task and packet deadlines are
met is to perform offline analysis to determine how much and
when a node requires network access for all packets to be
transmitted by their deadlines. However, network conditions
unavoidably change and it cannot be guaranteed that each and
every node will receive network access as requested. Also,
while it is possible to model the relationship between tasks and



packets using a directed acyclic graph (DAG), this solution is
not viable as solving scheduling problems involving DAGs are
usually performed offline due to the high time complexity.

To guarantee the timeliness of important packets that are
transmitted over the network, we propose a novel online holis-
tic scheduling framework that considers packet importance,
packet deadlines, and job deadlines to judiciously make assign-
ment and scheduling decisions. Specifically, our framework
provides a method to select and schedule the more important
packets for transmission to address packet urgency while
adapting to changing network conditions. The resultant packet
schedule is used to derive job deadlines. An LpEDF [24] based
scheduling algorithm is used to schedule jobs in uniprocessor
systems. For multicore systems, a collection of energy-aware
job assignment algorithms is studied. The solutions obtained
by each of the components in the framework are evaluated
against the optimal solutions and are shown to be a viable alter-
native to exhaustive search approaches. Comparison with the
most closely related work reveals that the proposed framework
improves on a specific QoS metric by about 30% on average
using about 37% less energy. In addition, our approach reduces
window constraint violations [23] by about 57.7%.

This paper is organized as follows. We start by describing
the system model and formally define the problem in Sec-
tion II. Section II-C serves to motivate the need for this work.
Section III presents the holistic scheduling framework while
the technical details are given in Sections IV and V. Section VI
discusses extensions to the framework. Simulation results are
given in Section VII and Section VIII concludes the paper.

II. PRELIMINARIES

We now describe our system model and provide some
motivations for our work.

A. Task and Packet Model

We consider a set of n independent periodic real-time tasks.
Each task τi is described by its nominal worst-case execution
time Ci, period Ti, and deadline Di. All tasks are synchronous.
The j-th job of task τi is denoted by Ji,j . The absolute release
time and deadline of Ji,j are ri,j and di,j , respectively. Jobs
are executed using EDF [13]. For the rest of the paper, we
simply use Ji to denote any individual job of τi when it is
irrelevant to distinguish between, say, Ji,j and Ji,k.

Without loss of generality, we assume that every job gener-
ates a packet at the end of its execution. Packets have firm real-
time deadlines, i.e., they must be transmitted by their deadlines
or they will be dropped. Packets from different instances of
the same task are equal in size while packets from different
tasks may vary in size. A packet Si,j is generated by Ji,j . We
simply use Si to denote a packet generated by any job of τi
when it is irrelevant to distinguish between, say, Si,j and Si,k.
A packet Si is described by its deadline offset Xi, worst-case
transmission time Zi, and importance Wi. Packet importance
is a dynamically changing value used to capture the urgency
of a given packet. The actual importance of a packet depends
on the past transmission history of earlier packets from the
same stream. The job Ji, which generates Si, also inherits

Fig. 1. Network communication model.

that importance level. That is, Ji is more important than Jk
if Wi > Wk. It is important to note that the importance of a
task may be different from one instance to another. Finally, the
absolute deadline of Si is Yi = di+Xi where di is the absolute
deadline (latest possible finish time) of the job that generates
Si and the deadline offset Xi denotes the relative deadline
of packet Si given di. Note that to simplify the analysis, we
express Yi as a function of di instead of the release time of
Si since the latter is not a statically known value.

B. Hardware and Power Model

For the uniprocessor case, the processor runs at k discrete
frequency levels. Note that the maximum frequency level
fmax = fk. Each frequency level fj is described by tuple
(Pj , Vj), where Pj and Vj denote the power and voltage
when running the processor at frequency level fj , respectively.
For the multicore case, cores are homogeneous and can
independently change frequency levels. For now, we assume
Pj , j = 1, . . . , k, only consists of dynamic power, which can
be expressed as Pj = α·Ceff ·V 2

j ·fj where α and Ceff are the
activity factor and switching capacitance, respectively. In other
words, we ignore leakage power for now. This assumption will
be relaxed in Section VI-B. The processor energy consumption
is defined to be the average power consumption over time.
Transition time overhead associated with switching from one
frequency level to another have been included in the task
worst-case execution times.

The system has a network card. We assume packet trans-
missions cannot be preempted (so that transmission overheads
are reduced). As in [25], the system uses TDMA-like periodic
time slots to send and receive packets (Figure 1). Such
a network communication model allows for contention-free
communication among nodes. No network communication for
a particular node takes place outside of its designated TDMA-
like time slots. We assume that incoming packets are buffered
at the sender and received by the receiver at the beginning
of each transmission window (denoted by the RX boxes in
Figure 1). The time slots, described by a period Tts and
transmission window of length Cts , may change over time
to reflect different network usage levels given by the MAC
layer protocol. For instance, event storms in sensor networks,
high levels of interferences, and varying degrees of network
density and traffic due to mobility may cause a node to be
temporarily granted less network access (e.g., larger Tts or
smaller Cts ).

Since our system may be granted less network access due
to situations described above, some of its packets may need
to be dropped. Note that since packets have firm real-time
deadlines, jobs that generate them must generate the packets
in time or there is no point in executing them. While it is
possible to have scenarios where a job may miss its deadline



TABLE I
EXAMPLE TASK SET

Task C T D X Z W
τ1 1 2 2 3 1 1
τ2 1 3 3 3 1 2
τ3 1 6 6 4 1 3

but its packet is transmitted on time, we do not consider them
in this work since we make an implicit assumption that job
deadlines are required to ensure data freshness.

The system must minimize its energy consumption to stay
alive for as long as possible. In this work, we will focus on
the energy used to execute tasks since the energy consumption
at the network card is already inherently considered via the
periodic time slots (i.e., the network card is turned off or put
to sleep outside of Cts ) and will not be further discussed.

C. Motivation

We use some simple examples to motivate the need for a
holistic approach to job scheduling and packet transmission
and highlight some key challenges. Assume that we have a
set of three tasks (Table I) running on a processor with the
maximum normalized frequency level fmax = 1. Task (and
packet) importance levels are as shown in the last column
of Table I, with τ3 being the most important and τ1 being
the least important. For the sake of clarity, we assume task
and packet importance levels are fixed for this example. We
further assume here that jobs always require their worst-case
execution times. Since the total utilization of the system is 1,
the processor executes at the maximum frequency level for the
entire duration. The job schedule is shown in Figure 2(a).

Let us assume that the system has network access from time
3 to 6 (and will not get access again until time 12). Using
EDF [13], the network schedule is as shown in Figure 2(b).
Observe that S3,1, despite being the most important packet, is
not transmitted.

One solution is to modify the network scheduler to consider
packet importance. If the network scheduler were to select the
most important packet to schedule first, the resultant packet
transmissions are as shown in Figure 2(c). Since the job
scheduler is unaware of the needs at the network side, it does
not give J3,1 a higher priority over the less important jobs. In
addition, in both scenarios described so far, many jobs were
executed in hope that their packets would be transmitted. This
unnecessarily wastes energy.

There exist value-based scheduling algorithms such as [3] in
literature. Using a job scheduler that selects the most important
job to schedule first, the resultant job and network schedules
are as shown in Figures 2(d) and 2(e), respectively. Here,
given the network restriction, the value-based job scheduler
performs well. However, if the system is granted more access
time, say from time 1 to 7, the value-based job scheduler
no longer leads to the best packet schedule (Figure 2(f)).
In this case, it is possible to transmit all packets in the
interval under consideration as shown in Figure 2(g). Note
that scheduling algorithms that exploit skip models (e.g., [5]
and [23]) suffer from similar shortcomings as value-based
scheduling algorithms.

(a) EDF job schedule.

(b) EDF packet schedule.

(c) Importance-based packet schedule.

(d) Value-based job schedule.

(e) Resulting packet schedule.

(f) Resulting packet schedule with more network access time.

(g) Alternative packet schedule.

Fig. 2. Job and packet schedules for the example in Table I.

To summarize, without specifically considering packet
transmission schedule and network conditions while perform-
ing job scheduling, it is not possible to control actual packet
transmissions. The situation is even more complicated when
packet priority dynamically changes due to past transmis-
sion history. A scheduling approach that considers both job
scheduling and packet transmission is needed to provide a
holistic view of the system and allows for more processor
energy to be saved.

III. HOLISTIC SCHEDULING FRAMEWORK

To successfully transmit the most important packets by their
deadlines while addressing the interdependencies between
job scheduling and packet scheduling, we use an adaptive
approach. In contrast to traditional job scheduling techniques,
we propose selecting and pre-scheduling more important pack-
ets to determine the latest packet release times (which is
equivalent to determining the deadlines of corresponding jobs)
and use these deadlines to make energy-aware job assignment
and scheduling decisions.

The flow of our framework is shown in Figure 3 and
is especially designed for systems in volatile networks. In
the proposed framework, there are four main steps: (i) dy-
namically assigning packet importance based on past trans-
mission history, (ii) pre-scheduling packets based on current
network conditions, (iii) assigning and scheduling jobs, and
(iv) actual job execution and packet transmission. These steps
are performed periodically (although the actual period can



Fig. 3. Proposed framework.

change over time to adapt to different network conditions).
Specifically, let t be the start time of next network access
time interval Cts . In addition, let t + tRX be the time
instant when the system may start transmitting packets, where
tRX denotes the network access time reserved for receiving
packets as shown in Figure 1. We set the current time interval
I = [t+ tRX , t+ Cts ]. The proposed framework will be used
prior to the start of every time interval. Note that this selection
of the time interval I is reasonable since the value of Tts is
usually in the order of several milliseconds, which tends to be
much larger than typical real-time task periods (which are in
the order of microseconds). That said, if the value of Tts is
comparable to task periods, I can be set to encompass several
transmission windows of length Cts each.

The primary goal in assigning packet importance is to
associate packets with priorities. Assigning importance (i.e.,
priority) to a packet (or a job) is an old problem that has
received significant research attention, e.g., [10], [22], [23].
In general, packets are assigned priorities dynamically based
on several considerations such as the usefulness of its content
as well as past transmission history. Specifically, whenever a
packet misses its deadline, the importance (i.e., urgency) of
subsequent packets in the same stream is increased to avoid
starvation [23].

The work in [23] provides a way to dynamically and
adaptively determine how important a packet is based on
past transmission history. Therefore, for the rest of this work,
we will assume the method proposed in [23], referred to as
DWCS, is used to determine packet importance. Specifically,
the current importance level of a task τi is defined to be
Wi = yi−xi

yi
, where xi is the maximum number of packets that

can be dropped within a fixed window of yi packets to ensure
that the window constraint is not violated [23]. Both xi and yi
can change over time [23]. It is crucial to note, however, that
our framework can be used in conjunction with any scheme for
assigning packet importance. Since we use existing work to
assign packet importance, we focus on packet pre-scheduling
and job assignment and scheduling in the subsequent sections.

IV. PRE-SCHEDULING PACKETS

In this step, the objective is to select and schedule the most
important packets for transmission instead of relying on the
default packet scheduler used by the network card to make
transmission decisions. During the current time interval I , we
consider a set of packets Ψ, where ∀Si ∈ Ψ, the corresponding
job release time occurs before the end of I and the absolute
deadline of Si occurs before the start of the next I . Also, for
Si ∈ Ψ, ∀Si, if the original absolute deadline of Si is greater
than t+ Cts , then it will be set to t+ Cts .

To determine Ψ′ ⊆ Ψ such that Ψ′ contains the most
important packets and is schedulable, we observe that to
minimize the maximum value of dropped packets, the least
important packets should be dropped first. The optimal packet
set and corresponding schedule can be found by solving
a mixed-integer linear program (MILP) with the following
objective function.

minimize : maxDropped (1)

where
maxDropped ≥Wi · (1− χi),∀Si ∈ Ψ (2)

and

χi =

{
1 if Si is not dropped
0 otherwise.

(3)

Let Ω′ be the job set containing all jobs that generate
the selected packets in Ψ′. Given a packet schedule, the
transmission start time TXSi of a packet Si, ∀Si ∈ Ψ′ is
known. This transmission start time in fact coincides with the
latest time that job Ji must finish executing. In other words,
for packet Si, ∀Si ∈ Ψ′, to be transmitted on time, the new
absolute deadline d′i of Ji is d′i = min{di,TXS i}. We also
define the transmission finish time TXF i = TXS i + Zi. In
the MILP formulation, the variables we would like to solve
for is the modified absolute job deadlines d′j , ∀Jj ∈ Ω′. We
also define the following variables.

ηi,j =

{
1 if d′j ≥ d′i
0 otherwise.

(4)

σi,j =

{
1 if TXS i ≤ TXS j

0 otherwise
(5)

The value of the actual deadline of each job must satisfy
the following two constraints, one of which represents the
necessary conditions for job schedulability.

d′j ≤ dj ,∀Jj ∈ Ω, (6)

rj + Cj ≤ d′j ,∀Jj ∈ Ω. (7)

Each packet must meet its deadline and cannot start until
its release time at the earliest. That is,

∀Sj ∈ Ψ

TXF j = TXS j + Zj · χj , (8)
Yj ≥ TXF j , (9)
d′j ≤ TXS j + (1− χj) · Λ, (10)



where Λ is some large constant.
The following constraints are used to ensure that packet

transmissions do not overlap.

∀Si, Sj ∈ Ψ,Si 6= Sj

TXF i ≤ TXS j + (1− σi,j) · Λ
+ (1− χj) · Λ + (1− χi) · Λ, (11)

TXF j ≤ TXS i + σi,j · Λ + (1− χj) · Λ
+ (1− χi) · Λ. (12)

The following constraints are needed to ensure that the
variables ηi,j , and σi,j , ∀Si, Sj ∈ Ψ, are as defined.

∀Si, Sj ∈ Ψ

1 ≤ ηi,j + ηj,i, (13)
d′i ≤ d′j + (1− ηi,j) · Λ, (14)

d′j ≤ d′i + ηi,j · Λ− ε, (15)

ε ≤ d′j − d′i + ηj,i · Λ, (16)

1 ≤ σi,j + σj,i, (17)
TXS i ≤ TXS j + (1− σi,j) · Λ, (18)
TXS j ≤ TXS i + σi,j · Λ, (19)

where ε is some small constant used to prevent numerical
errors due to floating point computations.

Some readers may have noticed that when the packet set is
selected and packet schedule is determined, the job schedule
is unknown. Since jobs generate packets, it is difficult to guar-
antee that the resultant packet schedule is indeed achievable
(i.e., whether the job set Ω′ with modified deadlines is in
fact schedulable). We observe that from the job scheduling
perspective, a job set is more likely to be feasible if its jobs
have more laxity (i.e., more time to finish from the time they
are released). For this reason, it may be desirable to solve an
additional MILP formulation once the select packet set Ψ′ is
obtained with the following objective function.

maximize : minLax (20)

where
minLax ≤ d′j − rj − Cj ,∀Jj ∈ Ω′. (21)

Alternatively, some type of weighted sum trading off dropped
packets against job laxity can be used in order to solve only
one MILP formulation. In this work, we choose to solve two
MILP formulations since the weight selection can be arbitrary.

While the MILP solver is guaranteed to return an optimal
solution, it is not suitable for online use when the problem
size is large since it is too computationally intensive. We
therefore introduce our simple heuristic. To maximize job
laxities, packets should be scheduled as late as possible.
We propose scheduling packets with later deadlines first to
maximize laxity. If two or more packets share the same
deadline, ties are broken in favor of the packet Si with the
largest ri + Ci, again, to maximize laxity. We keep track of
the end of the current schedule using the variable tend . That is,
a packet cannot be scheduled after tend . However, if a packet
deadline occurs before tend , then its transmission finish time

Algorithm 1 Packet Schedule(Ψ)
1: sort Ψ in non-increasing order of deadlines, ties broken

in favor of the packet Si with the largest ri + Ci

2: droppedSet ← ∅
3: done ← false
4: while done = false do
5: tend ← Y0 // Y0 is the absolute deadline of the first

packet in Ψ
6: for each Si ∈ Ψ do
7: if tend ≥ Yi then
8: TXS i ← Yi − Zi // schedule Si by Yi
9: TXF i ← Yi

10: else // Other packets have been scheduled later on so
schedule Si now

11: TXS i ← tend − Zi

12: TXF i ← tend

13: tend ← TXS i

14: flag ← false
15: for each Si ∈ Ψ do
16: if ri +Ci > TXS i then // ri +Ci is the earliest time

Si can be generated
17: flag ← true
18: if flag = true then
19: Ψ← Ψ−Sq // Sq is the packet of lowest importance
20: droppedSet ← droppedSet ∪ Sq

21: else
22: done ← true
23: Υ ← packet schedule represented by a linked list sorted

in non-increasing order of transmission start times // The
node for packet Si is tagged with TXS i and TXF i

24: sort droppedSet in a non-increasing order of importance
25: for Si ∈ droppedSet do
26: for each node Nj ∈ Υ do
27: Nk ← Nj .nextNode
28: if Nk 6= ∅ then
29: s← Nk.TXF
30: else
31: s← t+ tRX

32: f ← Nj .TXS
33: if f ≤ Yi and f − s ≥ Zi and s ≥ ri + Ci then
34: TXS i ← s
35: TXF i ← f
36: Ψ← Ψ ∪ Si

37: break

will be set to its deadline. Algorithm 1 shows the steps required
to select Ψ′ and derive a packet schedule that is guaranteed
to be feasible and that attempts to maximize job laxities.

When two or more packets share the same deadline, the
packet Si, which has a larger ri +Ci, will start later than the
packet Sj with a smaller rj + Cj to maximize laxity. Note
that Algorithm 1 ensures that the constraints in (6) and (7) are
satisfied to ensure that the resultant packet transmission start
times, and hence the deadlines of the corresponding jobs, are
valid. Specifically, the constraint in (6) is ensured by Lines



7–9 of Algorithm 1. On the other hand, the constraint in (7)
is ensured by Line 16. That is, if there exists a packet Si

which is set to be transmitted before the job that generates
it can possibly finish executing, the least important packet is
dropped and the schedule is reconstructed.

One problem that may arise with the above method of
finding a packet schedule is that packets with lower importance
may be dropped, even when it is not necessary. Specifically,
consider two packets Si and Sj where Wi < Wj . If Sj

is dropped, then Si is also dropped. While this dropping
technique does not affect the maximum value of the most
important packet dropped (see (2)), it is still desirable to
execute Si in the current time interval (if possible) since doing
so may prevent an increase in Wi in the next time interval.
For this reason, after a packet schedule has been obtained, we
test to see if some of the dropped packets can be restored, as
shown in Lines 23–37 of Algorithm 1. The worst-case running
time of Algorithm 1 is in O(|Ψ|2).

V. ENERGY-AWARE JOB ASSIGNMENT AND SCHEDULING

The third component of our framework focuses on energy-
aware job assignment and scheduling to meet as many job
deadlines as possible for minimizing the maximum value
of the most important packet that is dropped (equation (2))
while saving energy. We start by considering uniprocessor
architectures before moving on to multicore systems.

A. Uniprocessors

In a single processor system, there is no need to consider
how to assign jobs, only how to schedule them. Recall that
from the last section, we are provided with a job set Ω′, which
generate the packets to be transmitted. Our goal here is to
schedule as many jobs in Ω′ as possible by their deadlines
while minimizing energy.

While our tasks are originally periodic (Section II), job
deadlines may be shortened in the packet pre-scheduling
phase. In other words, for the job set under consideration, each
job has a release time, worst-case execution time, and dead-
line. To schedule these jobs, we propose using LpEDF [24],
which has been proved to be optimal in terms of minimizing
energy consumption of ideal processors. (For discrete-speed
processors, two speed levels can be used to approximate the
desired speed level, if the latter is not available [11]). LpEDF
determines a frequency schedule for a given job set. Observe,
however, that the job set Ω′ is not necessarily schedulable,
i.e., the resultant frequency schedule after applying LpEDF
may contain frequency levels that are higher than fmax. In
such a case, some jobs will need to be dropped.

Since jobs inherit the importance of the packets they gener-
ate, determining which jobs (and therefore packets) to drop in
this step can be accomplished in the same manner as selecting
the most important packets in Algorithm 1. Therefore, we
omit the repeated explanation but provide our job scheduling
algorithm in Algorithm 2.

We now discuss the performance of Algorithm 2 in the
following theorem. The proof is trivial and is thus omitted.

Algorithm 2 Uniprocessor Job Sched(Ω′)
1: Π← job schedule obtained from Ω′ using LpEDF [24] //

each entry in Π is tuple (ei, Ji) where ei and Ji denote
the frequency level to be used for executing job Ji

2: while ∃ej ∈ Π : ej > fmax do
3: Ω′ ← Ω′−Jq // Jq is the job whose packet is of lowest

importance
4: Π← job schedule obtained from Ω′ using LpEDF [24]
5: return Π

Theorem 1: For a given job set Ω′ running on an ideal
processor, Algorithm 2 minimizes the value of the most
important packet that is dropped.

The worst-case time complexity of Algorithm 2 is
O(|Ω′|3 log2|Ω′|) since LpEDF requires O(|Ω′|2 log2|Ω′|) to
run in the worst-case [24] and there can be at most |Ω′| itera-
tions of the while loop. The time complexity of Algorithm 2
can be reduced to O(|Ω′|2 log3|Ω′|) if binary search is used in
the while loop instead of linear search. As with Algorithm 1,
to prevent jobs with lower importance from being dropped
even when it is unnecessary, a test can be performed to see
if some of the dropped jobs can be restored. This addition is
very similar to Lines 23–37 of Algorithm 1 and increases the
worst-case running time of Algorithm 2 to O(|Ω′|3 log3|Ω′|).

B. Multicore Systems

In a multicore system, we first need to assign Ji ∈ Ω′, ∀Ji,
to cores before scheduling can take place. The problem of task
assignment is NP-hard in general, except for frame-based tasks
where all tasks share a common deadline [4]. Most existing
work assume periodic tasks and fixed deadlines (e.g., [16]).
Recall that the jobs under consideration have release times,
worst-case execution times, and deadlines. In addition, job
deadlines may be smaller than their implicit deadlines and the
deadlines are not necessarily constant from one task instance to
another. There exist research results on job-level assignment,
e.g., [20], but they do not consider energy.

We focus on the energy-aware job assignment phase since
once it is complete, the scheduling technique discussed in the
last section can be straightforwardly applied on each processor.
The state-of-the-art approach to assigning jobs to cores is
to perform load balancing, as in [4]. To reduce energy, jobs
should be assigned to cores in such a way so as to balance the
energy consumption among cores. In the absence of significant
leakage power, it is well known that less energy is consumed
if the processor runs as slow as possible (i.e., using the lowest
possible frequency levels). We propose to study a collection
of heuristics (three of which are our own) whose performance
will be assessed in Section VII-B. In Section VI-B, we discuss
how our approach can be extended to processors in which
leakage power is significant.
• Largest-Job First (LJF) [4]: Sort jobs in a non-

decreasing order of worst-case computation time and
assign a given job to the core with the least aggregated
computation time.



• Largest-Density First (LDF) [4]: Same as LJF except
that job densities are used instead of job worst-case
computation times. The density of a job Ji is defined
as δ = Ci

di−ri .
• Most-Important First v.1 (MIF-1): Sort jobs in a non-

decreasing order of importance and assign a given job to
the core with the least intensity during the job’s active
interval, which starts at the job’s release time and ends
at the job deadline. The intensity of the active interval of
length a of job Ji is

∑
Jk∈Π Ck·ovk,i

a , where Π is the set of
jobs currently scheduled on the core under consideration
and ovk,i is the ratio of the overlap in active intervals
between Jk and Ji.

• Most-Important First v.2 (MIF-2): Same as MIF-1
except that a given job is sent to the core with the least
aggregated densities (similar to LDF).

• Most-Important First v.3 (MIF-3): Same as MIF-1
except that a given job is sent to the core with the least
aggregated importance.

Except for MIF-1, which runs in O(|Ω′|2 · M), where
M is the number of cores in the system, all other algo-
rithms presented above have a worst-case time complexity of
O(|Ω′| · log |Ω′|+ |Ω′| ·M). Once all the jobs in Ω′ have been
assigned, Algorithm 2 can be used on each core to determine
job schedules (and possibly drop some jobs).

VI. NOTES ON FRAMEWORK

We now discuss some generalizations and limitations of the
proposed framework.

A. Extensions to Task and Packet Models
In Section II, we made some simplifying assumptions with

regards to the system model to simplify the discussion of
the proposed framework. Specifically, we assumed that all
jobs generate packets and packets are generated at the end
of job execution. We first discuss the inclusion of non-packet
generating tasks in our framework. If there are non-packet
generating, soft real-time tasks in the system, they can be
assigned and scheduled when the system is not busy executing
packet generating jobs. On the other hand, the inclusion of
hard real-time non-packet generating tasks in the system is
part of our ongoing investigation.

The assumption that each packet is generated at the end
of job execution is in fact not required in our framework.
All analyses from the previous sections hold with regards to
packet feasibility and job schedules; if a job generates a packet
before it finishes executing, that packet arrives to the network
queue earlier and has no adverse effect on the packet schedule
(although it may increase the network buffer size). That said,
more energy can be saved if it is known exactly when a job
will generate a packet since job deadlines set in Section IV
can be extended accordingly.

Similarly, though all the algorithms implicitly assume that
jobs (packets) require their worst-case execution times (trans-
mission times), all the analyses in this paper remain valid.
Obviously, more energy can be saved if slack reclamation is
used but this topic is beyond the scope of this work.

B. Leakage Considerations

Due to shrinking device sizes and aggressive voltage scal-
ing, subthreshold leakage current increases exponentially as
the supply voltage is reduced, causing energy to be wasted
when the system runs at very low frequency levels [9].
For such systems, running the processor below the critical
frequency fcritical is suboptimal [9] and can cause the system
to consume more energy than necessary. While it is possible
to adjust an existing frequency schedule by substituting any
frequency level fj < fcritical with fcritical , a more energy-
efficient schedule may exist.

There is a wealth of research on leakage-aware energy min-
imization for real-time systems, e.g., [9], [17]. In particular,
the work by Niu and Quan [17] can be used on each processor
after Algorithm 2 to obtain a leakage-aware schedule.

VII. EVALUATION

This section presents simulation results to demonstrate the
effectiveness of our framework. We evaluate the performance
of the packet pre-scheduling and job assignment and schedul-
ing steps, and compare our framework with an existing work
that solves a similar problem.

A. Pre-Scheduling Packets

Recall that the primary goals of Algorithm 1 are to select
the most important packets to schedule and derive a schedule
that maximizes the minimum job laxity. We compared the
performance of our heuristic (Algorithm 1) with that of the
MILP, which was solved using CPLEX with AMPL. The time
limit was set to 1 minute for the CPLEX solver, which means
that if an optimal solution has not been found within that time,
the best feasible solution found so far will be returned.

For our benchmarks, 100 tasks sets consisting of between
10-45 tasks each were randomly generated for 10 different
utilizations (U = 0.5, 0.75, . . . , 2.75) with a total of 1000
task sets overall. The utilization is defined to be

∑n′

i=1
Ci

Ti

where n′ is the total number of tasks in the system. Task
periods ranged from 50 to 300 time units, with the worst-case
execution time being set between 30-60% of the period. The
absolute deadline of a packet is set to be equal to the absolute
deadline of the corresponding job. Packet sizes vary randomly
between 1-3.5% of Cts , which is set to 300 time units. Packet
importance is between [0, 1]. Finally, |I| = 300.

The first set of results are summarized in Figure 4(a), which
shows the value of the most important packet dropped (i.e.,
the value of equation (2)) on the y-axis as a function of system
utilization. When the utilization is low, there are fewer tasks in
the system and hence fewer packets. On the other hand, more
packets are generated when the utilization is high because
there are more tasks in the system. The MILP was able to
keep every packet while our heuristic approach dropped some
of them. That said, Algorithm 1 dropped very few packets
and only the least important ones. On average, the normalized
value of the most important packet dropped is 0.0073 (0.73%
deviation on average in other words).
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(a) Value of most important packet dropped from
different packet scheduling algorithms.
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(b) Minimum job laxity of different packet schedul-
ing algorithms.
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(c) Value of most important job dropped from
different job assignment algorithms for the two-
core case.
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(d) Energy consumption of different job assignment
algorithms for the two-core case.

2.5 3 3.5 4 4.5 50

0.05

0.1

0.15

0.2

0.25

0.3

Utilization

N
or

m
al

iz
ed

 M
os

t I
m

po
rt

an
t

Pa
ck

et
 D

ro
pp

ed
 (A

ve
ra

ge
)

 

 

MIF 1
MIF 2
MIF 3
LJF
LDF

(e) Value of most important job dropped from
different job assignment algorithms for the four-
core case.

2.5 3 3.5 4 4.5 50.2

0.4

0.6

0.8

1

Utilization

N
or

m
al

iz
ed

   
   

  
En

er
gy

 C
on

su
m

pt
io

n

 

 

MIF 1
MIF 2
MIF 3
LJF
LDF

(f) Energy consumption of different job assignment
algorithms for the four-core case.
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(g) Comparison to [25] in terms of minimizing the
maximum importance of dropped packets.
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(h) Comparison to [25] in terms of energy con-
sumption.
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(i) Comparison to [25] in terms of packet deadline
meet ratio.

Fig. 4. Simulation results.

In terms of maximizing the minimum job laxity (Fig-
ure 4(b)), Algorithm 1 performs very well when the total
task utilization is low (and fewer packets are generated). As
the total task utilization increases, Algorithm 1 deviates more
from the results obtained by solving the MILP formulation.
Specifically, the average minimum laxity from Algorithm 1
is about 17.68% smaller than that of the MILP and up to
47.59%. It must be emphasized, however, that Algorithm 1
performs very well in terms of minimizing the value of the
most important packet dropped. In addition, while the MILP
solver can be used for very small problem instances, it is too
computationally intensive for solving medium to large problem
instances online (and it cannot guarantee that any feasible
solution will be found within some time limit). On average,
Algorithm 1 is at least 1,000× faster than the MILP.

B. Job Assignment & Scheduling
In this section, we assess the performance of the proposed

energy-aware job assignment and scheduling algorithms pre-
sented in Section V-B. We compared our solutions with the
optimal solutions obtained by a brute-force algorithm. In an
exhaustive search, all possible job assignments are explored
and the job assignment that is both feasible and results in the
least amount of energy consumed is identified.

In the simulations, we assume a multicore system consisting
of two identical cores. Each core is modeled after the Intel
Core 2 Duo [8], with a maximum power consumption of 65 W
and seven normalized frequency levels: 0.462, 0.615, 0.692,
0.769, 0.846, 0.923, and 1. System utilization ranges from
1.0, 1.1, . . . , 1.9. A total of 100 task sets were generated for
each utilization (2000 task sets in total). The same method and
parameters as in the last section were used to generate the task
sets. Since the total number of job assignment combinations
is |M ||Ω| where |M | is the number of cores and |Ω| is the
number of jobs, we limit the number of jobs to 20 to stay
within the range of a long integer (this is also the reason why
we limit the number of cores to only two). Specifically, we
discarded any task sets containing more than 20 jobs during
I (|I| = 300) and regenerate them until 100 task sets were
found for each utilization.

Figure 4(c) shows the maximum importance level of
dropped jobs (and hence packets) as a function of system
utilization using the different job assignment algorithms. With
only two cores and at most 20 jobs, LJF yields the best
results (same as the exhaustive search), with no dropped jobs,
while MIF-1 performs the worst. In terms of energy consump-
tion (Figure 4(d)), no heuristic obtains the minimum energy



consumption that the exhaustive search achieves, though LJF
again yields the best results among the different heuristics,
followed closely by MIF-2 and LDF.

To assess the performance of the different job assignment
algorithms when the problem size is larger (and where an
exhaustive search cannot find solutions within an hour), we
performed an additional set of simulations. The system is
assumed to have four identical cores, which are again modeled
after the Intel Core 2 Duo [8]. The system utilization ranges
from 2.5, 2.75, . . . , 5. A total of 100 task sets were generated
for each of the utilization (1100 task sets in total).

Figure 4(e) shows the maximum importance level of
dropped jobs as a function of system utilization using different
job assignment algorithms discussed in Section V-B. Overall,
MIF-2 and MIF-3 yield the best results, though they can be
outperformed by LJF and LDF in some cases. MIF-2 and MIF-
3 improve on the value of most important job dropped by about
1.08-2.67% on average when compared to LJF and LDF. In
terms of energy consumption, MIF-2 and MIF-3 once again
outperform LJF and LDF on average (though not by much, as
shown in Figure 4(f)).

Based on the simulation data, MIF-2 provides the best
performance for a given energy consumption level, although
the performance of all five algorithms are close, which may
suggest the limits of this type of job assignment algorithms. In
any case, since the brute-force approach takes several minutes
to find the optimal solution for even a small benchmark, it
cannot be used online. Based on the results given above,
MIF-2 performs well enough (and is 100,000× faster than
the exhaustive search on average) to be a viable alternative.

C. Entire Framework

We compare the effectiveness of our proposed framework
with the most closely related work by Yi et al. [25]. In Yi’s
algorithm, both packet and job deadlines are considered but all
packets are assumed to be equally important. Simulations were
performed assuming a single processor core is used since the
work in [25] only focuses on uniprocessor scenarios. The task
sets and other parameters (including packet importance) are
generated in the same way as in Sections VII-A and VII-B
except for the following parameters. The average system
utilization is set to 0.5 and the size of a single packet varies
randomly between 0.5-30% of Cts . The larger the packet size,
the more loaded the network is and the harder it is to transmit
all packets by their deadlines.

The graph in Figure 4(g) shows the maximum importance
level of dropped packets as a function of packet size. As
expected, our proposed holistic framework always outper-
forms Yi’s algorithm [25], which does not consider packet
nor job importance. On average, our framework reduces the
average maximum importance of dropped packets by 30%
(up to 96.4%). As the network becomes more overloaded,
our framework is forced to drop more packets (but always
the least important ones first). This is the reason why the
curve representing the holistic framework tends to increase
as the packet size increases. As for Yi’s algorithm, it is hard

TABLE II
ADDITIONAL PARAMETERS FOR SIMULATIONS OVER

SEVERAL TIME INTERVALS

Time Interval Cts Tts Packet size increase
[0 : 5, 000] 300 500 0%

[5, 000 : 10, 000] 100 500 0%
[10, 000 : 15, 000] 300 500 10%

to predict which packets will be dropped since all packets
are considered to be equally important. For instance, Yi’s
algorithm often results in important packets being dropped
(Figure 4(g)). However, at times, it may by chance transmit
more important packets instead of less important ones (i.e.,
the dip in Figure 4(g)).

As expected, our proposed framework also results in less
energy consumed (Figure 4(h)). When the network is un-
derloaded (shown towards the left side of Figure 4(h)), our
method pre-schedules jobs and packets ahead of time to
maximize job laxity and hence reduces energy consumption.
In contrast, Yi’s algorithm greedily tries to send out packets
as soon as possible, even when it is unnecessary. This results
in large energy consumption. As the network becomes more
loaded, our approach saves energy by dropping jobs whose
packets are never transmitted. On the other hand, Yi’s algo-
rithm always executes jobs, even if the corresponding packets
are dropped. The dip in the curve representing Yi’s algorithm
can be explained as follows. As the network becomes more
loaded, the next available transmission time becomes further
away in the future, allowing jobs to be executed at lower speed.
As the packet size increases, however, more energy will be
consumed because jobs need to finish earlier to send larger
packets out. This is the reason why the curve slowly increases
again after the dip. In summary, our approach saves energy
by 37.3% on average when compared to Yi’s algorithm (up to
78.5% and at least 10%).

An often used performance metric for comparing packet
scheduling algorithms is the deadline meet ratio, which is
the ratio between the number of packets transmitted by the
deadline and the total number of packets during some time
interval. As shown in Figure 4(i), on average, Yi’s algorithm
sends out 1.7% more packets on average and up to 3.1% when
compared to our framework. However, as will be shown at the
end of this section, our approach results in a higher deadline
meet ratio when the behavior of the system over a long period
of time is considered.

Finally, to show that our approach is able to control packet
urgency over time, we performed a set of simulations where
task importance is dynamically adjusted in each window using
the rules in [23]. A total of 100 task sets consisting of
10 tasks each were simulated for 15,000 time units. The
task set utilization is 0.5 and the average packet sizes vary
randomly between 0.5-2% of the Cts . For the DWCS window
constraint [23], each task starts with a y value of 20. The
starting x value varies randomly between 1 and 19. The DWCS
window constraint is set to x

y , which indicates that at most
x packets can be dropped within a window of y packets. A
violation occurs when more than x packets are transmitted
in a window of y packets for any given stream. The values



TABLE III
RESULTS FOR SIMULATIONS OVER SEVERAL TIME INTERVALS

Yi’s Algorithm [25] Holistic Framework
avg max min avg max min

No. of violations 350.2 581.0 196.0 148.3 402.0 1.0
Norm. energy (%) 84.7 100 73.0 30.3 40.8 24.5
Deadline meet ratio 0.47 0.56 0.38 0.71 0.88 0.59

of x and y are updated every time interval I . In general, the
value of y for a stream is decreased if its previous packet
is serviced before its deadline. For more information, readers
are referred to Figures 2 and 3 in [23]. Additional parameters
used in this set of simulations are shown in Table II. The last
column of Table II denotes the increase in packet sizes to
simulate changing transmission rate.

Since we are using the window constraint in [23] as the
performance metric, the goal is to minimize the number of
window constraint violations while saving energy. As shown
in Table III, our approach significantly improves upon Yi’s
algorithm both in terms of the number of window constraint
violations and energy by intelligently dropping some packets.
Also, since the holistic framework only executes jobs that
are necessary, it offers significant energy savings compared
to Yi’s algorithm. Finally, Table III shows that our method of
pre-scheduling packets in each individual time interval helps
to improve the total deadline meet ratio since it does not
suffer as much from the “domino” effect when the network is
overloaded. This phenomenon is not reflected in Figure 4(i)
since the latter only counts packets whose deadlines fall within
that time interval and cannot capture the full benefit in using
our adaptive approach.

VIII. SUMMARY

To increase the performance of computationally-intensive
wireless real-time applications in volatile networks, we pre-
sented a holistic scheduling framework that considers packet
and job deadlines, as well as packet importance, to ensure
timely transmissions of the most important packets while
saving processor(s) energy. The proposed framework can adapt
application performance to changing network conditions and is
shown to outperform the best existing technique by about 30%
on average. Our future goals are to implement the proposed
framework on a real system and extend it to consider processor
transition overheads and heterogeneous multicore systems.
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