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Abstract—A cyber-physical system (CPS) must con-
tinue to meet minimum performance requirements under
extreme conditions, such as in the presence of security
breaches. Existing security-aware techniques and analyses
focus on pre-attack countermeasures and do not consider
the impact of security attacks on real-time performance.
We propose a post-attack node and load allocation algo-
rithm for CPSs that must continue operation even under
energy-exhaustion attack. Our algorithm is designed based
on probabilistic programming where chance constraints
are used to capture the potential effects of an attack, thus
allowing the CPSs to be more resilient. Simulation results
indicate that our method is able to significantly increase
the remaining CPS energy, thus extending the operating
lifetime of the CPS.

I. INTRODUCTION

A cyber-physical system (CPS) is a system in which
the physical component (e.g., sensors and actuators) is
tightly coupled with the computation and communication
components (e.g., smart control and intelligent data fu-
sion). Efficiency, dependability, security, and timeliness
are the primary concerns when designing a CPS. For
example, an outdoor tactical border surveillance system
consisting of batteried nodes that detect motion and
capture images must be efficient since its primary energy
source may be solar. At the same time, the system
must be available when needed, secure enough that it
is reasonably hard to compromise, able to deliver data
in a timely manner so that appropriate actions can be
taken, and able to response to changes in environments
or application requirements.

The availability of a potentially large number of
nodes, i.e., processors or other computing devices, in a
CPS allows for a natural design of an energy-efficient

system. Namely, a CPS may only make use of a subset
of its nodes to save energy and allow other nodes an
opportunity for battery recharges. In this paper, we will
focus primarily on the energy-efficiency and security
aspects of a CPS and their relationships to real-time
performance. Several research papers have addressed
various security aspects in the context of CPSs, e.g., [1],
[13], [14], [16], [17] and real-time systems, e.g., [4], [5],
[7], [15]. However, an unexplored area of research is
providing CPS livelihood resilience post attack. In this
work, we focus on security breaches that seek to degrade
CPS performance by draining the energy resources of in-
dividual nodes [13]. In these so-called battery or energy-
exhaustion attacks [3], [13], an adversary interacts with a
node in legitimate ways but with ill-intent so as to prevent
the node from going into a lower energy consumption
sleep state. This “sleep deprivation torture” affects the
availability of the node through an increased draining of
its energy supply that may force a premature shutdown
or degraded performance. In this work, we generalize
the aforementioned energy attacks in that a node may
not only be forced to remain awake, but that it may
need to operate in a higher energy consumption mode
due to increased in its workload. Using our previous
example, it is not hard to imagine that the outdoor
tactical border surveillance system may be a victim
of energy exhaustion attacks so that the surveillance
system provides incomplete coverage. In such a case, the
desirable behavior of the system would be to continue its
operation even when under attack while providing the
best possible coverage.

To jointly optimize for CPS energy efficiency and
resilience, we consider CPSs consisting of a number of
nodes, some of which may be under attack and forced to
expend energy. The CPS must decide (i) which nodes978-1-4799-6177-1/14/$31.00 c©2014 IEEE



to assign loads to, and (ii) how much workload, i.e.,
utilization to give to each node in order to meet a specific
performance metric and save the total remaining system
energy to increase CPS lifetime. This node and load
allocation problem is first solved using a chance con-
strained programming formulation [10], [11], to capture
the uncertainty due to an attack. For run-time use, we
propose an efficient heuristic algorithm that considers the
impact of energy attacks on a node’s energy state when
performing node and load allocation.

II. PRELIMINARIES

We present our system model and state our assump-
tions in this section.

A. Node Model

We consider a CPS with |M | heterogeneous nodes.
Different nodes may execute different sets of periodic
real-time tasks. The actual utilization, i.e., amount of
work to be completed over time, of a node mi is denoted
Ui, i = 1, . . . , |M |, and is to be determined during the
node and load allocation process. We assume that the
Earliest Deadline First (EDF) scheduling algorithm [6]
is used to schedule tasks on each node.

Each node mi runs on a battery with energy harvest-
ing capability. At time t0, the energy level of a node is
denoted as Ei,t0 . The energy consumption by mi during
time interval [t0, t], t ≥ t0 is

EUi,t−t0 = (αi + Pi) (t− t0) , (1)

where αi is a constant associated with static power
consumption of node mi and Pi = Cef V

2
dds, where

s = κ (Vdd−Vt)
2

Vdd
, and Cef , Vt, Vdd , and κ represent the

effective switch capacitance, the threshold voltage, the
supply voltage, and a hardware-design-specific constant,
respectively [2], [12]. Each node is equipped with dy-
namic voltage and frequency scaling (DVFS) capability.
The actual voltage and frequency pair used by mi is
referred to collectively as speed level si ∈ [0, 1].

During the time interval [t0, t], a node may be under
energy attack. The energy wasted due to such an attack
can be expressed as

E̊i,t−t0 = P̊i · (t− t0), (2)

where P̊i is the power consumption due to the attack,
i = 1, . . . , |M | and which may not be precisely known
but can be predicted using models or via profiling [8].

Given the current time t0, the total remaining energy of
mi at time t, t ≥ t0 is

Ei,t = Ei,t0 − EUi,t−t0 − E̊i,t−t0 + Er
i,t−t0 , (3)

where Er
i,t−t0 is the harvest energy during that time

interval. The total remaining system energy is

Esys,t =

|M |∑
i=1

Ei,t. (4)

B. Energy Attack Model

We will use the work by Mitchell and Chen [8] to
identify nodes in a CPS as compromised (under attack) or
non-compromised (free from attack), with a given false-
positive and false-negative rate, based on the degree of
compliance to an ideal node’s behavior [8]. We assume
insidious attacks where the attacker perpetrates the attack
against nodes at same time and for the same duration.
The effect of the energy attack, carried out via extraneous
interactions, is to increase the speed level of the node,
i.e., the node is forced to execute at a higher voltage
and frequency pair than the real-time task set assigned
to it dictates. In other words, the total node utilization
is increased in an effort to waste the node’s precious
resources. Obviously, the higher the speed level, the more
energy consumed. Let si be the speed level needed to
finish the workload assigned to a node by some deadlines
as stated earlier, we assume that the impact of an attack
leads to an increase in speed level of s′i where s′i ∈
[1/3, 2/3]. We further assume that the resultant speed
level si + s′i can be determined with 5% accuracy [9].

III. NODE AND LOAD ALLOCATION

In an energy attack, the main objective is to cause the
nodes in the CPS to waste energy. Consequences of this
type of attack include, but are not limited to, temporal
overloads, excessive energy consumption, decreased per-
formance, deadline misses, and dead nodes. Needless to
say, an energy attack is especially effective in a wireless,
batteried CPS, which is the focus of this work. Even if
an attack can be detected, it may be difficult or time con-
suming for the system to respond with countermeasures.
For these reasons, we propose a proactive approach to
increase CPS resilience, as discussed next.

A. Problem Formulation

We will use mathematical programming to guide us
in the design of a resilient node allocation algorithm.



However, simply formulating a node and load allocation
problem as a standard constrained optimization problem
is not practical since an energy attack may not be
detected immediately or at all, especially if it is of
lower impact. Also, the node must necessarily estimate
the impact of an attack, which may not be precisely
known. Both of these difficulties make the node and load
allocation problem very difficult and a straightforward
application of constrained optimization may result in
suboptimal or even infeasible solutions. To overcome
these challenges, we propose using chance constrained
programming. Specifically, the node and load allocation
problem can be formulated as follows.

max : Esys,t =

|M |∑
i=1

Ei,t (5)

s.t. :

|M |∑
i=1

xiUi = Utotal (6)

0 ≤ xiUi ≤ 1 (7)

Pr(Ei,t ≥ max{Ei,t0 − xiEUi,t−t0−
xiξiP̊i · (t− t0) + Er

i,t−t0 , 0})
≥ 1− α, i = 1, . . . , |M | (8)

x ∈ {0, 1} (9)

where α is the risk level and is usually smaller than
0.05, Utotal is the required total system utilization to
maintain minimum performance level, t0 is the current
time and t is some future time point (t ≥ t0), ξi,q,
i = 1, . . . , |M |, denote the probability that an attack has
been made on node mi. The binary decision variable
xi = 1 if node mi will be assigned a utilization Ui,
and xi = 0 otherwise, for i = 1, . . . , |M |. The other
variables are as defined in Section II-A. The above
chance constrained programming aims to maximize the
total remaining energy of the CPS under consideration.
The constraints are to ensure that the required work
is completed in a timely manner (6), that no node is
assigned more workload than it can handle (7), and that
the probability that a node’s energy level is at least what
is predicted is no less than as dictated by the risk level α
(8). Note that we choose to optimize the total remaining
system energy instead of actual node lifetimes since the
latter are harder to compute when the workload allocated
to a given node may frequently change, as is in our case.

The chance constrained programming problem in (5)–
(9) is a probabilistic formulation of a variation of the
knapsack problem, which is known to be NP-hard even

in the deterministic case. Combined with the fact that the
majority of chance constrained programming problems
cannot be efficiently solved at runtime, we propose using
an efficient heuristic to solve our problem.

B. Efficient Heuristic

We begin by defining the relative energy index Êi,t−t0
of a given node mi during the time duration t− t0 as the
ratio of the sum of the energy consumption required to
execute a real-time task set at some required utilization
level Ui and the energy expended by the node due to
attacks over the remaining energy level and the energy
gained due to recharging. In other words,

Êi,t−t0 =
P̄i · (t− t0) + EUi,t−t0

Ei,t0 + Er
i,t−t0

, (10)

where P̄i, i = 1, . . . , |M |, denote the predicted power
consumption due to the attack. Note that the predicted
power consumption value is used instead of the actual
power consumption, as the definite impact of an energy
attack may not be known until later, if at all. It is clear
from (10) that a node with a lower value of Êi,t−t0
makes a relatively more efficient use of its resources.
The concept of relative energy index not only allows
for nodes to be ordered in some manner, but is general
enough to be used in real CPSs where nodes may
be heterogeneous in terms of computational power and
recharge characteristics.

The uncertainties in the system stem from the prob-
ability that an attack is being carried out, as well as the
impact of that attack on a node’s energy level. If an attack
has been made on node mi but not detected, i.e., we
have a false negative, the node’s energy level will be
underestimated, possibly resulting in the node running
out of energy earlier than expected. On the other hand,
if there is no attack but a detection has been made, i.e.,
we have a false positive, the node’s energy level will be
overestimated, possibly resulting in necessarily reduced
performance. Clearly, a false negative has a bigger impact
on a node’s energy level than a false positive.

We now present our energy-aware node and load
allocation algorithm, which is summarized in Alg. 1.
Alg. 1 takes as inputs the set of nodes in a CPS, the
total required system utilization Utotal , the current time
t0, a future time point t where loads may be reallocated,
and Ustep , which is a user-defined parameter. The output,
if any, is a set of nodes that must be online or available
along with their assigned workload, i.e., utilization.



The main idea behind the proposed algorithm is to
sort the nodes in a non-increasing order of relative energy
index (Lines 6–8). The utilization level for each node is
assigned iteratively. In each iteration, Ustep is assigned to
the node with the smallest relative energy index, i.e., the
node with the best energy efficiency (Lines 14–23). This
process continues until all the required system utilization
has been allocated. There are two scenarios that Alg. 1
can encounter when returning an empty set, i.e., no
solution. In the first scenario, Utotal is greater than |M |,
which means that the total required system utilization
exceeds the total utilization that the CPS can execute
assuming that each node can only handle a utilization
of up to 1 (Lines 1–2). In the second scenario, the total
system energy at time t is less than zero, which implies
that there is not enough energy left in the CPS for the
requested total system utilization (Lines 19–20).

To analyze some properties of Alg. 1, we define the
deterministic version of the problem in (5)–(9) as

max : Esys,t =

|M |∑
i=1

Ei,t (11)

s.t. :

|M |∑
i=1

xiUi = Utotal (12)

0 ≤ xiUi ≤ 1 (13)

Ei,t = max{Ei,t0 − xiEUi,t−t0 − xiE̊i,t−t0

+ Er
i,t−t0 , 0}, i = 1, . . . , |M | (14)

x ∈ {0, 1} (15)

Some relevant properties of Alg. 1 are discussed in the
following lemmas with proofs omitted to save space.

Lemma 1: A non-empty solution returned by Alg. 1
satisfies the constraints in (12), (13), (14), and (15).

Lemma 2: As the user-defined parameter Ustep → 0,
Alg. 1 always returns a solution, if one exists.

One question that may arise from Lemma 2 is how to
set Ustep . Clearly, it is desirable to set Ustep to a relatively
small value to increase the likelihood that a solution
will be found. However, the smaller Ustep , the larger
the runtime overhead. The most time consuming part of
Alg. 1 is the while loop spanning from Lines 5–23. In the
worst case, the loop will be iterated Uiter = Utotal

Ustep
times.

The operation that sorts nodes in a non-decreasing order
of energy index (Line 8) is the most time consuming
step inside the while loop. Hence, the time complexity of
Alg. 1 is O(Uiter |M | log|M |), where |M | is the number

Algorithm 1 Allocation(M , Utotal , t0, t, Ustep)
1: if |M | < Utotal then // Assuming each node can

handle a utilization of up to 1
2: return ∅
3: Ui ← UattackExp

i , i = 1, . . . , |M | // UattackExp
i is the

expected impact of attack on system utilization
4: Ucurr ← 0
5: while Ucurr < Utotal do
6: for each node mi ∈M do
7: compute Êi,t−t0 according to (10)
8: M ← Sort Nodes by Energy Index(M )
9: for mi ∈M do

10: Ei,t ← Ei,t0 −EUi+Ustep ,t−t0 − E̊i,t−t0 +Er
i,t−t0

// Check to see if this node will have enough
energy

11: if Ei,t < 0 then
12: continue
13: else if Ui +Ustep ≥ 1 or Ucurr +Ustep > Utotal

then
14: Urem ← min (1− Ui, Utotal − Ucurr )
15: Ucurr ← Ucurr + Urem

16: Ui ← Ui + Urem

17: if abs (1− Ui) < ε then // This node is fully
loaded so remove it from further considera-
tion

18: M ←M −mi

19: if M = ∅ and Ucurr < Utotal then
20: return ∅
21: else
22: Ucurr ← Ucurr + Ustep

23: Ui ← Ui + Ustep

24: return U

of nodes in the system. The user-defined parameter Ustep

should be set as small as possible while large enough
for the overhead of the algorithm to be tolerable online.
Finally, our algorithm can be applied to clusters of nodes
if the CPS is very large.

IV. EVALUATION

We now assess the performance of our algorithm
using simulations.

A. Simulation Setup

Due to the lack of existing algorithms that consider
real-time performance in face of security breaches, we
compare our algorithm against the following algorithms,



which focus on optimizing the quality-of-service of ap-
plications subject to energy constraints on the nodes. The
algorithms, which are based on the Largest-Estimated-
Utilization-First strategy [2], will be used to demonstrate
that failure to consider the impacts of energy-exhaustion
attacks can lead to significant reductions in the lifetime
of a tactical border surveillance system. We did not
compare our method against an algorithm that has perfect
knowledge of the attacks, as any performance gain would
be due to superior attack detection and does not offer
insights on the performance of the proposed algorithm.
Algorithm A: Sort nodes with the largest remaining
energy first (predicted energy expended due to attacks is
ignored). Assign to each node the maximum utilization
it can handle in sorted order.
Algorithm B: Sort nodes with the largest remaining
energy first (predicted energy expended due to attacks
is ignored). The node with the largest remaining energy
is incrementally assigned a utilization amount of Ustep .
The node list is resorted and the process is repeated until
all the required workload has been assigned.

Unless stated otherwise, there are 128 nodes in the
CPS. The value Ustep is set to 0.1. For the sake of
simplicity, we assumed that all the nodes were initially
fully charged. We further assumed that for each node, the
maximum utilization is 1 since EDF is used to schedule
tasks. The speed level due to an attack is obtained using
a uniform distribution while the errors in estimating the
actual speed levels are based on a normal distribution.

Nodes are compromised from the outset of the simula-
tion and no new nodes are compromised for its duration.
Following the work by Mitchell and Chen [8], let the
random variable Xb ∼ Beta(α = 1, βpa

) represent the
degree of compliance of a compromised node with an
attack probability of pa and using a compliance threshold
th = 0.90, the probability ptp that a compromised node
is identified as compromised (a true positive) is given
by ptp = Pr (Xb < th) = Ith(α = 1, βpa), where
Ix(α, β) is the cumulative distribution function of the
Beta distribution. On the other hand, the probability that
it is incorrectly identified as uncompromised (a false
negative) is pfn = Pr (Xb ≥ th) = 1− Ith(α = 1, βpa).
Letting the random variable Xg ∼ Beta(α = 1, βg) rep-
resent the degree of compliance of a non-compromised
node with a compliance threshold of 0.9, the probabilities
of a true negative and a false positive can be similarly
calculated. Given the above, a node will be identified as
compromised if 1−Xb/g > 0.1, where Xb is used if the
node is compromised and Xg if it is not.

B. Results

We first assess the performance of the proposed
algorithm relative to Alg. A and B under different ratios
of compromised nodes (the number of compromised
nodes over the total number of nodes in the CPS). The
results are shown in Fig. 1(a) and 1(b). From Fig. 1(a),
it is obvious that our method is able to significantly
reduce the number of dead nodes, thus allowing the
tactical border surveillance system to remain operational
for longer while meeting its performance requirements.
In fact, when the ratio of compromised nodes is 1, i.e.,
all the nodes in the tactical border surveillance system
are compromised, applying our algorithm results in only
about 18 dead nodes. In contrast, none of the 128 nodes
remain alive when applying Alg. A or B. On average, our
approach allows for about 86% more nodes to remain
alive, which is a significant improvement. Fig. 1(b)
depicts the remaining energy for the different algorithms.
Our method allows for the CPS to have remaining energy
after the simulation ends, whereas using Alg. A and B
result in the entire CPS being down.

We now compare the performance of our algorithm
against Alg. A and B for various CPS sizes, as shown in
Fig. 2(a) and 2(b). For this set of simulations, the size of
the tactical border surveillance system is between 10 and
5000. The ratio of compromised nodes is set to 0.25 and
Ustep set to 1 since, for large CPSs, the performance
of Alg. B and 1 is most likely less sensitive to the
value of Ustep . From this set of simulations, it is clear
that the proposed algorithm significantly outperforms the
baseline algorithms. Specifically, Alg. 1 results in 98.9%
more live nodes on average, and up to 99.7%, with
positive remaining CPS energy.

V. CONCLUSIONS

We showed that in the design of resilient CPS, even
nodes that are under energy-exhaustion attack can be
used to maintain the performance level of a CPS. The
proposed node and load allocation algorithm thus allows
for efficient use of precious resources and helps the sys-
tem continue operation even in the presence of energy-
exhaustion attack. As future work, we plan to consider
other types of attacks in addition to energy-exhaustion at-
tack and test our framework on real hardware platforms.
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