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Abstract—Vehicles that are becoming more highly automated
are revolutionizing the world’s transportation systems for their
promise of increased safety and efficiency. The advantage of
vehicles incorporating automation are that they do not suffer
from the same limitations as human drivers, such as being
distracted or impaired. In order to realize the potential of these
vehicles which operate in highly dynamic environments, online
techniques are needed. This article presents such an algorithm
to minimize the disruption of traffic flow by optimizing for the
number of safe lane changes, thereby increasing throughput and
reducing congestion. The proposed algorithm is distributed in
nature and makes use of vehicle-to-vehicle and/or vehicle-to-
infrastructure communication technologies to judiciously make
local lane change decisions while guaranteeing that no collisions
will occur. In contrast to existing work, the proposed technique
requires no assumption on the number of lanes, nor on the
dynamic attributes of the vehicles such as velocity and accel-
eration. Simulation results show that the proposed algorithm is
both efficient and effective in maximizing the number of lane
changes on a given stretch of a highway.

Index Terms—Automated highways, intelligent vehicles, lane
change, optimization, scheduling, cooperative systems

I. INTRODUCTION

Raffic congestion has become a major challenge for

transportation professionals and roadway users across the
world. As more of the world becomes more mobile, congestion
during peak hours results in wasted time for billions of people
around the globe. The effects of congestion delays on the
individual are mostly negative: there is a reduction of air
quality due to vehicle idling and drivers’ quality of life are
affected by having a large amount of non-productive time
which results in reduced time with family and friends, as well
as economic losses due to non-productivity. Congestion also
has a negative impact on safety, as it causes drivers to make
increased decisions during stop and go traffic.

Financial, environmental, and land use considerations pro-
vide an increasingly difficult environment to significantly
increase the capacity of roadways by adding additional roads
or lanes. Fortunately, congestion can be alleviated by replacing
human-operated vehicles with automated vehicles, which free
the driver from the mental workload of a large number of
tasks, some of which have to be carried out in parallel [1]. The
promise of reduced non-recurring congestion, due to reduction
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in vehicle crashes (approximately 25% of all congestion in
the US), provides great opportunities for the supplement of
automated vehicles into the fleet. Computer-operated vehicles
also have shorter reaction times [10], which allow the vehicles
to be closer to one another, thus increasing traffic flow.

Of all basic vehicular maneuvers, lane changing is arguably
one of the most difficult ones. There were approximately
539,000 two-vehicle lane change crashes in the United States
alone in 1999 [35]. Analysis of the German In-Depth Accident
Study [35] from 1985 to 1999 shows that, on average, more
than 5% of accidents occurred while changing lanes. In 2008,
1.7% of the registered highway accidents in the Netherlands
were caused by inadequate lane changing [30]. Lane changing
is also a challenge for automated vehicles. Tsao et al. reported
that the exit success percentage, which is the number of
automated vehicles that successfully exit the system divided
by the number of vehicles that need to exit, is well below
100% due to the lack of gaps sufficiently large for safe lane
changes [37]. To achieve the promise of high throughput and
increased safety, a technique that minimizes the disruption of
traffic flow by automated vehicles during lane changes must
be implemented to avoid unnecessary slow downs. Since all
the vehicles are automated, decisions to change lanes may be
made by individual vehicles or to avoid an emergency situation
ahead. Regardless, our goal is to provide a mechanism that
best utilizes available gap to facilitate as many lane changes
as possible to optimize capacity.

In this article, we are interested in designing an algo-
rithm that maximizes the number of safe lane changes under
homogeneous motorway conditions and assuming that all
vehicles are automated. Although there exists a large number
of automated lane change assistant systems (Section II), to the
best of our knowledge, there has been no work that attempts
to minimize the disruption of traffic flow by maximizing
the number of lane changes for live traffic on a stretch of
a highway with an arbitrary number of lanes, without any
assumptions on vehicles’ dynamic attributes such as speeds.

Our main contributions are as follows.

e Given an arbitrary number of automated vehicles, we
design an algorithm to maximize the number of safe
lane changes on an arbitrary segment of a highway at
any given time. Our proposed algorithm use information
such as vehicles’ positions, speeds, and time slacks (to
be defined later) to make judicious lane change decisions
without requiring prior knowledge on traffic patterns nor
unnecessary braking. To reduce runtime overhead, we
propose a distributed approach that allows for local lane
changing decisions to be made at run time.

o We present a lane change simulation platform that enables
the implementation and comparison of different lane



change algorithms. A large number of simulations can
be run efficiently and various simulation parameters such
as the number of vehicles wishing to change lanes can
be specified.

The remainder of the paper is outlined as follows. We review
existing literature regarding lane changes in Section II. Sec-
tion III provides the system model and state the assumptions
made in the paper. The minimum time slack calculations,
which is used to determine if a vehicle can change lanes
without a collision, is presented in Section IV. Our distributed
approach is discussed in Section V and the details of our
online algorithm in Section VI. Section VII discusses the
practical factors involved in implementing our approach in
real operating scenarios. Simulation results are presented in
Section VIII and Section IX concludes the paper.

II. RELATED WORK

Some work on lane changing focuses on lane change assis-
tant systems for human drivers [12], [14], [20], [30], [33], [34],
[36], [39], [41], while others consider lane change collision
avoidance systems [2], [5], [15], [22], [38]. There exist various
sophisticated lane change controller designs [13], [23], [29].
For example, a technique to perform lane changing to avoid
obstacles is presented by Papadimitriou and Tomizuka [27].
Chee and Tomizuka studied the lane change maneuver that
is most comfortable to passengers [8], [9]. The overtaking
maneuver, which consists of one lane change from the right
lane to the left lane and one lane change from the left to the
right lane to pass a vehicle, has also been examined [25], [40].

To increase passenger safety, several researchers have pre-
sented various models to predict a vehicle’s intention of lane
changing. For example, Xuan and Coifman exploited the
availability of differential GPS data to detect lane change [42].
Angkititrakul et al. used a stochastic driver behavior to predict
whether a lane change may occur [4]. Many cooperative
approaches that make use of vehicles-to-vehicles (V2V) com-
munications exist for a variety of lane change related purposes:
eliminating risks during lane change [3], merging due to lane
closures [21] and freeway entrance [28], overtaking assis-
tance [7], and path predictions for increased safety [24]. To
minimize unnecessary lane changing, Wouter et al. proposed
a lane change model that combines drivers’ desire to change
lanes and incentives such speed [32].

Despite the wealth of research on lane change of automated
vehicles, most work assume a 2-lane (in either direction)
system, consider only one lane change at any given time, or
assume that the vehicles travel at about the same speed [17]-
[19]. Hilscher et al. presented a method to perform lane change
safety verifications of an arbitrary number of automated vehi-
cles on multi-lane highways [16], but did not provide an actual
mechanism to select the vehicles for lane changing.

III. SYSTEM MODEL AND ASSUMPTIONS

We consider a set of automated vehicles W along an arbitrary
segment of an m-lane highway, where m is an integer and
m > 2. All vehicles are automated and highway conditions
are homogeneous. The width W of each lane is known a
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Fig. 1: An example 6-lane highway.

priori. Although we assume, for the sake of simplicity, that
all lane widths are equal, this work can readily be applied to
highways in which lane widths differ. Each automated vehicle
V; is characterized by its length /; and width w;. At any given
time, the current lane, velocity wu;, acceleration a;, and jerk
7i of V; are known. In addition, the position p; of the front
left of the vehicle with respect to some reference point, which
is represented by a tuple (z;,y;), is known for vehicle V;.
Figure 1 shows a 6-lane highway example with 3 automated
vehicles. At any point in time, a vehicle may wish to perform
a lane change for whatever reason. For instance, a vehicle V;
may want to change lane since it is coming upon a slower
moving vehicle V; in front of it. In such a case, if a lane
change is not made (or not made until later), V; will slow
down and adopt the Gipps’ car following model [11], which
is a widely used car following model. That said, our approach
can be modified for use with other car following models.

We assume the existence of either a roadside infrastructure,
which allows for vehicle-to-infrastructure (V2I) communica-
tions [6], [31], or a vehicular adhoc network (VANET) for
vehicle-to-vehicle (V2V) communications [24]. Such commu-
nications are used by a vehicle to obtain necessary information
(e.g., velocity, acceleration, etc.) of other vehicles in the
vicinity.

The distance traveled by a vehicle V; during the time interval
[to, t] is

1 2 1 . 3

Si(t) = Si(to) + u; (t — t()) + 5(1@' (t — to) + 6]i (t — to) . (D

In this article, we adopt the approach used by Neades
and Ward [26] to compute the time a vehicle V; requires
to perform a lane change. Specifically, the objective of the
original analysis is to compute the minimum time taken to
change lanes given the critical speed, which is the maximum
speed at which a turn can be negotiated [26]. Significant
modifications were made to the original derivation to obtain
the time required to perform a lane change for a given vehicle
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Fig. 2: Lane change maneuver of an automated vehicle [26].

with arbitrary velocity, acceleration, and jerk. That is, the
swerve taken by vehicle V; follows the trajectory (dotted line)
illustrated in Figure 2. Here, a is assumed to be half the width
of a lane and thus is known. The angle 6; is also known since
we are considering automated vehicles.

With known values of 6; and a;, ¢; = ﬁ(&) Applying
Pythagorean theorem, b; = \/(c? — a?). The total distance
vehicle V; requires to perform a lane change (i.e., complete
swerve) is d; = 2(%b;) = wb;. Finally, the time for V;
to complete a lane change ¢ can be found by solving the
following equation

wh; = uitf + %ai (tf)Q + éjl (tf)3 . )

For the sake of clarity, we ignore lateral acceleration. How-
ever, said acceleration can be incorporated when calculating
the time a vehicle requires to complete a lane change. The
proposed technique requires no modification when lateral
acceleration is considered.

IV. MINIMUM TIME SLACK CALCULATIONS

Let us consider an automated vehicle V; whose attributes
are as described in Section III. As shown in Section III, the
time to complete a lane change for V; can be computed as
in Equation 2 and depends on a number of factors such as
Vi’s speed, as well as the lane width. However, since V; is
unlikely to be the only vehicle on a given stretch of highway,
V; may not be able to change lanes right away or a collision
may ensue if the gap between V; and another vehicle is not
large enough. We now use a simple example to demonstrate
how the time vehicle V; has to change lane can be calculated.

Figure 3 shows an example scenario consisting of two
automated vehicles V; and V; at some time ¢. Let the current
positions of V; and V; be p; = (x;,y;) and p; = (z;,y,),
respectively. In addition, V; is in front of V}, i.e., y; > y;. Let
us assume V; starts the lane change process at time ¢ and both
vehicles maintain their velocities, accelerations, and jerks. Let
pi = («},y)) be the new position of V; at time ¢ + t5. In
addition, let Vs position at time t + t{ be p} = (2, y)).
Clearly, m; =x; =z}, and

’ c 1 c\2 L. c\3
y; =yj +uy () + 5% (t5)" + 677 (t)" - (3)
A collision will not occur if, at time ¢+-t§, V; either remains

behind V; and the latter’s headway is at least three seconds
or V; is now in front of V; and its headway is at least three

Fig. 3: An example scenario where V; wishes to change into
V;’s lane.

Fig. 4: If V; wishes to change into the top lane, it must consider
its time slacks with respect to the shaded vehicles.

seconds. For the first scenario to be true, the following must
be satisfied

yi — li > r(vi, a4, i) + v, )

where [; is the length of V; and r(v;, a;, j;) is the minimum
distance between V; and V; according to the three-second
following distance rule, which depends on wv;, a;, and j,.
Similarly, if Vj; is now in front of V;, we have

y;_lj Zr(vjaajajj)—’_y;‘ %)

Consequently, tﬁj, the time V; has to change lane with

respect to V;, can be obtained by solving the following
expression

1
2

1 3
gjj (t?g) ,

(6)
provided that V; will end up in front of V. A similar condition
can be derived for the case where V; will be in front of V.
It is worth noting that if the time a vehicle requires to initiate
lane changes is non-negligible, said time can be subtracted
from the left-hand side of the equation above.

We are now ready to define the time slack of V; with respect
to Vj.

Definition 1: The time slack of V; with respect to V; is the
difference between the time V; has to change lane with respect
to V; and the time V; takes to change lane given its current
velocity, acceleration, and jerk. In other words,

Yi—li—r(vi, ai, 5i) = yi+uy (65)+5a; (tﬁj>2+

slij =1t} —th. (7

(&

The time slack helps to determine whether a lane change
is safe. That is, a positive time slack denotes a safe lane
change (with respect to another vehicle) while a negative time
slack implies that a collision may occur. In real scenarios,
a vehicle wanting to change lane may need to consider its
time slacks with respect to a number of vehicles, instead of
just one vehicle. Figure 4 indicates the vehicles that V; (the
vehicle wanting to change lane) needs to account for. Let '



be the set of vehicles currently in the lane that V; wishes to
change to. Then, the time slack of V; with respect to V; € T’
needs to be computed if

o Vj laterally overlaps with V;, ie., y; —1; < y; < y; or
vi — i <y; — 1l <wi,

e Vj is the lateral vehicle immediately in front of V;, i.e.,
y; = miny, er{yx }|y; > y; and Vj; is not traveling faster
than V;, or

 Vj is the lateral vehicle immediately behind V;, i.e., y; =
maxv, er{yk }y; < yi — b

We are now ready to generalize the concept of time slack.

Definition 2: The minimum time slack of V; with respect

to a group of vehicles T is the minimum difference between
the time V; has to change lane with respect to V; € I and
the time V; takes to change lane given its current velocity,
acceleration, and jerk. In other words,

sl =

min sl; ;. 8
7 VJ'EF/ ] ( )

If at most one vehicle wants to change lane, a positive
minimum time slack indicates that a safe lane change can take
place. We next consider the more realistic scenarios where
more than one vehicle on a segment of a highway may wish
to change lane.

V. A DISTRIBUTED APPROACH FOR LARGE HIGHWAYS

One way to maximize the number of lane changes given
a set of automated vehicles on a stretch of highway is
to formulate the problem as an optimization problem with
constraints on safety for each time instant. However, the
resultant optimization problem is relatively complex and con-
tains integer variables, making it hard to solve the problem
efficiently online using a mixed-integer programming solver.
An alternative approach is to consider, for each stretch of the
highway of interest, all the vehicles in all the lanes in order
to make centralized, globally optimal decisions. However, this
approach may not be practical or efficient enough when there
is a large number of vehicles. In addition, such a centralized
approach requires that each vehicle be aware of all other
vehicles on that particular stretch of a highway, even if they
are far enough apart that they cannot possibly interfere with
one another. For these reasons, we resort to designing efficient
local algorithms. The key idea is to solve the problem in a
distributed manner instead of globally.

We observe that given an m-lane highway in each direction,
we can divide the problem of lane change maximization into
a number subproblems, as illustrated in Figure 5. In this
example, there are 5 lanes and 16 vehicles, 8 of which wish
to change lane. To reduce runtime overhead, a subproblem
is created for each lane that at least one vehicle wants to
change to. There are 4 subproblems in this example, as no
vehicle wishes to change to the top lane. In subproblem 1
(Figure 5b), potential changes into the second lane from the
first and third lanes are considered. Note that potential lane
changes by V51 and Va3 are ignored since these vehicles may
or may not change lane in the end. This process is repeated
for all the lanes. Algorithm 1 provides the steps needed to
create the subproblems. It takes as inputs the number of lanes

Algorithm 1 Divide_Into_Subproblems(m, ¥)

: \I/i<—(2),i:1,...,m
fori=1,...,m do
for each V; € ¥ do
if V;.currLane = i then // V}’s current lane is L;
cfori=1,...,m do
if i = 1 then
if 3V; € U,141|V;.desiredLane = i then
Create_Subproblems(2, L;, L1, Vs, Witq)
/I Create a subproblem with 2 lanes L; and L,
containing all the vehicles in ¥; and ¥;
10:  else if i = m then
11 if 3V; € U,_1|V;.desiredLane = i then
12: Create_Subproblems(2, L;_1, L;, ¥;_1, U;)
/I Create a subproblem with 2 lanes L;_; and L;
containing all the vehicles in ¥;_; and ¥,

R e A A S ol S

13:  else

14: if 3V; € U,_, UV, 14|V;.desiredLane = i then
15: Create_Subproblems(3, L;_1, L;, Ljy1, ¥;—1, Uy,
Uii1)

/I Create a subproblem with 3 lanes L;_;, L;, and
L;y, containing all the vehicles in ¥;_;, ¥;, and
Wit

and the set of vehicles, and returns a set of subproblems. Each
subproblem consists of a number of lanes, the vehicles in each
of the lanes, and a set of vehicles that wish to change into a
common lane.

The time complexity of Algorithm 1 is O(m - |¥]), where
m is the number of lanes on the stretch of the highway under
consideration and || is the number of vehicles associated
with said stretch of the highway. To prove some properties of
the subproblems created using Algorithm 1, we start with a
definition followed by a lemma.

Definition 3: A feasible lane change configuration for a
given subproblem is a set of lane change decisions made
within that subproblem that ensures no collision among ve-
hicles within the subproblem will occur.

Lemma 1: Consider an m-lane highway in each direction, a
set of automated vehicles ¥, and a set of automated vehicles
wanting to change lane A, A C W. Applying Algorithm 1
will result in at most m subproblems. In addition, decisions
whether or not to allow vehicles in each subproblem to change
lane can be made independently, i.e., without considering
decisions made in other subproblems, and no collision will
occur due to these independent lane change decisions as
long as the lane change configuration for each subproblem
is feasible.

Proof: 1t is straightforward to show that there can be
at most m subproblems, since there can be at most one
subproblem per lane. We now show that no collision can
occur by making lane change decisions for each subproblem
in parallel.

Without loss of generality, let us assume that there are two
subproblems S; and S for changes into lanes L; and Lo,
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Fig. 5: An example used to illustrate how the lane change
maximization problem on a 5-lane highway in each direction
can be considered four lane change maximization problems on
three 3-lane highways and one 2-lane highway. The arrow in
front of a vehicle indicates that vehicle’s desire to perform a
lane change. In Subproblem 1, only changes into the second
lane are considered. This is the reason why the potential lane
change by Va; and Va3 are not considered in this subproblem.

respectively. In addition, a feasible lane change configuration
within each subproblem is found, i.e., there are no collisions
among vehicles within the subproblem. Now, let us assume
that applying said feasible lane change configurations result
in a collision. Since, by definition, a feasible lane change
configuration ensures no collision among vehicles within a
subproblem can happen, a collision must occur outside of the
subproblems, i.e., in the original problem. Since subproblem
S1 focuses on changes into lane L; and subproblem S5 lane
Lo, a collision can only occur if a vehicle from lane L; does
not safely change into lane L5 (or vice versa). However, during
the creation of the subproblems, all the vehicles in a given
lane are considered. Hence, a collision cannot happen. This is
a contradiction and the lemma is proved. [ ]

Based on the above lemma, we will now focus on the
problem of maximizing the number of lane changes on a 3-
lane highway.

VI. ALGORITHM

We are interested in solving the following problem.
Problem 1: Given a 3-lane highway with a set of automated
vehicles whose attributes such as velocity, acceleration, and
jerk are known, and in which a subset of those vehicles wish
to change lane, determine the set of vehicles that are allowed
to change lanes in order to maximize the total number of safe
lane change at any given time.

Although it has been shown in the previous section that an
m-lane highway can be divided into several 3-lane highways
to reduce the complexity of the problem, the number of
automated vehicles on a given stretch of a highway may still
be large. To further optimize for the efficiency of our approach,
we now introduce the concept of grouping of vehicles, which
will allow us to solve Problem 1 in a distributed manner.

The main idea behind grouping is based on the observation
that several lane changes may occur at the same time on a
given stretch of a 3-lane highway, as long as vehicles are
far enough apart, as shown in Figure 6a. This idea can be
taken a step further, as illustrated in Figure 6b, by observing
that grouping can be made with respect to some vehicle. For
example, in Figure 6b, V4 can change lane without needing
to consider Vp, but must account for both Vg and V-, as the
latter vehicles are within its “range”. Our concept of grouping
is shown in Algorithm 2.

Algorithm 2 takes as input ¥, which the set of vehicles on
a 3-lane highway. Each vehicle has a position, velocity, and
acceleration as dictated by Gipps’ car following model. The
first step taken by Algorithm 2 is to sort the vehicles such
that VV;,V; € ¥, ¢ < j if and only if y; > y;. In other
words, vehicles are sorted in a non-increasing order of their y
positions. Algorithm 2 then starts a group containing V;, which
is the first vehicle in W. Next, using V;’s time to change lane
ti, it computes the distance separating V; and V; (the next
vehicle in ¥) while accounting for the three-second following
distance rule. If this distance ds is negative, a collision may
occur if V; and V;; change lanes at the same time. As a result,
V; must be grouped with V; and Algorithm 2 continues the
same process with the next vehicle in ¥. Otherwise, the current



(a) If V4 and Vg are far enough apart from the rest of the vehicles,
they can be considered separately from the other vehicles when
making lane change decisions.

Group 1

Group 2

(b) Here V4 must consider Vg and V¢ but can ignore Vp.

Fig. 6: Grouping examples.

grouping is finished and the new group is started until there
are no vehicles remaining in V. An optimization can be made
to Algorithm 2 by only including vehicles that wish to change
to the common lane and the vehicles already in that lane.
This is because vehicles that do not currently wish to change
lanes and which are not currently in the common lane cannot
interfere with those wishing to switch lanes.

The time complexity of Algorithm 2 is O(|¥|?), since
sorting takes O(|¥| - log|¥|) and the most time consuming
part of the algorithm occurs within the while loop. In the worst
case, one vehicle is removed from ¥ in every iteration, which
means that the while loop will iterate for at most |¥| times.
In addition, the inside while loop will iterate for at most ||
times, while all other operations take constant time. The time
complexity of Algorithm 2 can be reduced to O(|¥| - log|¥|)
by replacing the inner while loop with a for loop and using
binary search.

It is worth noting that some checkpoints are left off the
description of Algorithm 2 for the sake of clarity. For example,
additional steps are needed if there exist at least two vehicles
with exactly the same y values, i.e., Jy; = y;, V5, V; € U.

Once grouping takes place, the vehicle wishing to change
lane and which is at the front of each group will be selected for
lane change. We now discuss some properties of Algorithm 2
using the following lemmas and theorem.

Lemma 2: Consider a 3-lane highway with a set of auto-
mated vehicles W. If Algorithm 2 is used to group vehicles in
such a way that one vehicle per group performs a lane change,
no collisions will take place.

Proof: The proof is straightforward, as a new group is
formed by Algorithm 2 if the safety distance computed on
Lines 9-14 is satisfied. ]

Lemma 3: Consider a 3-lane highway with a set of au-
tomated vehicles W, applying Algorithm 2 results in the
maximum number of groups where one vehicle per group can
change lane without violating safety constraints.

Proof: We prove the lemma using contradiction. Let us
suppose that Algorithm 2 found n groups, but that a feasible

Algorithm 2 Vehicles_Grouping(¥)

I: ¥ « WU sorted in a non-increasing order of y;, ¢ =
1,...,|¥| // Sort vehicles by their positions, with the
first vehicle being the one in front of other vehicles. Ties
broken in favor of smaller time slacks.

2: T <« 0 // T will hold the final groupings

3: while ¥ # () do

4 Vi« WI0] // V; is the first vehicle in ¥

5. W<« ¥ —V; // Remove V; from the set of vehicles

6: v < V; // The current grouping contains V;

7. while true do

8: VJ — U [0]

oyl =u () + Sa; (8)° + 1j; (t@f’

gy =y (1) ga; (1) + 43 (1)

11 if y; >y} then // V; will be in front of V;

12: ds —yi—1; — yg —r(vi, as, ji)

13: else // V; will be in front of V;

14: ds < y; — lj —y; — r(vj, a5, ;)

15: if d, < 0 then // If a collision will occur

16: v < v U V; // Include V} inside this group since
V; can interfere with V;

17: W < ¥ — V; // Remove V; from the set since V}
has already been grouped

18: else // Need to start a new group

19: T v

20: break // Go back to Line 4

21: return Y

solution with n+1 groups exists. Without loss of generality, let
us also assume that in the second, i.e., better, set of solution,
the vehicles in the n* and n + 1** groups make up the n*"
group found by Algorithm 2. This means that it is possible to
divide the n** group found by Algorithm 2 into two (or more)
groups. However, in Algorithm 2, a new group is form only
if the safety constraint is satisfied. This violates the original
assumption that the second set of solution is feasible. Hence,
the lemma is proved. [ ]
Theorem 1: Consider a 3-lane highway with a set of
automated vehicles W, some of which wish to switch to the
center lane. Using Algorithm 2 to group the vehicles and
selecting the vehicle at the front of each group for lane change
results in the maximum number of lane changes, provided that
only one vehicle per group is allowed to change lane at a given
time instant.
Proof: The proof directly follows from Lemmas 2 and 3.
|

VII. PRACTICAL CONSIDERATIONS

Algorithms 1 and 2 were described in such a way as to
facilitate the discussions. The use of Algorithm 1 in real
operating scenarios is straightforward; the ‘“center” lane is
always the lane vehicles wish to change to. Hence, for an
m-lane highway (in each direction), there can logically be up
to 6 “center” lanes.

As for Algorithm 2, information regarding groups must be
passed downstream, i.e., from vehicles in the front to the ones



in the back. However, the process can be optimized whenever
situations similar to the one in Figure 6a arise. That is, since
Ve can obtain information regarding the position, velocity,
acceleration, and jerk of Vg, V¢ can easily determine if it can
form its own group that is separate from Vp.

As shown in the previous section, the computational over-
head is fairly negligible. In addition, if the average time over-
head required to gather, transmit, and process data inputs such
as speeds, accelerations, and positions, is known, Algorithm 2
can use basic vehicle dynamics to predict the current speeds
and positions at a given time instant. Similarly, errors in data
accuracy can be handled by adding a safety margin to the
three-second rule, which is used to ensure that vehicles do not
collide.

VIII. SIMULATIONS

We compare the effectiveness and efficiency of our proposed
algorithm against the following techniques, both analytically
and using simulations. Note that comparison choices are very
limited, as we are the first to consider the problem of lane
change maximization. To ensure a fair comparison, an m-
lane highway (in each direction) is divided into several 3-lane
highways as discussed in Section V.

o Random algorithm: A number r between [0, k] is ran-
domly generated, where k is the number of vehicles
that wish to make a lane change. Based on this random
number r, r vehicles will randomly be selected for lane
change.

¢ Greedy algorithm: In this algorithm, the minimum time
slacks are ignored and all the vehicles that wish to change
lane will be allowed to do so.

o Least slack first algorithm: One vehicle is selected to
change lane at any point in time. The vehicle with the
minimum time slack will be chosen.

A. Simulation Framework

Since the objective of the simulations is to evaluate the
performance of the proposed algorithm compared to the base-
line algorithms, we assume that information on surrounding
vehicles such as positions, velocities, and accelerations are
readily available. (The information would in reality be sent
to the vehicles using either V2V or V2I.) Specifically, for
each vehicle in a given time instant, the following values are
known to the system: unique vehicle ID, position, velocity,
acceleration, jerk, safety distance with respect to the vehicle
immediately in front of it according to the three-second rule, 6
(the angle at which the vehicle takes to perform a lane change,
see Section III), time taken to perform a lane change, current
lane, and desired lane. If a vehicle does not wish to change
lanes at this time, then the current lane is the same as the
desired lane.

We randomly generated 20,000 benchmarks, each of which
contains a number of automated vehicles on a 3-lane highway
in each direction. The highway is assumed to have three
lanes since we have previously shown that the problem of
lane change maximization on wider highways can be divided
into a number of subproblems with 3-lane highways. Each

TABLE I: The ranges for the various attributes of the vehicles
in the simulations

Vehicle Attribute Minimum Value | Maximum Value
Y-Position 0 1600
Velocity (m/s) 5 30
Acceleration (m/s?) 0 2

benchmark represents a snapshot in time. Specifically, for
each benchmark, there is a number of vehicles with associated
positions, velocities, and accelerations. The number of vehicles
wishing to change lane in this benchmark is also specified.
The total number of vehicles in a benchmark ranges from 5 to
100, with the number of vehicles wishing to change lane being
between 0 and 55. For the sake of simplicity, all vehicles are
assumed to have the same width, length, and 6, and jerks are
set to zero. The positions, velocities, accelerations, as well as
starting and end lanes were randomly generated. The ranges
for these values can be found in Table I. In all cases, the
length of a vehicle is 2 m and the maximum motorway length
is 3000m. The desired lane change ratio varies among the
benchmarks but the average desired lane change ratio is about
44%. Given these values, the safety distance (the minimum
distance separating this vehicle from the vehicle directly in
front of it) and the time the vehicle takes to change lane, can
be computed.

The following performance metrics will be used in each
benchmark to assess the performance of the algorithms: lane
change ratios, collision ratios, and time overheads. The lane
change ratio [ is defined as

__ Number of safe lane changes performed

9
Total number of desired lane changes ©

while the collision ratio ¢ can be expressed as
Number of collisions (10)

€= Total number of vehicles
Finally, the time overhead represents the overhead associated
with a given algorithm and will indicate whether our proposed
method is suitable for online use.

B. Analytical Comparisons

Before presenting the simulation results, we analytically
derive the best- and worst-case scenarios for the algorithms.
As will be shown in the next section, the simulation results
verify the correctness of the analyses presented here.

Let £ and n be the number of vehicles that wish to change
lane and the number of groups when using the proposed
algorithm, respectively. The best and worst cases are shown in
Tables II and III, respectively. Thanks to our grouping method,
no collisions will occur. The proposed algorithm results in
the maximum number of lane changes, provided that at most
one vehicle per group can change lane. For both the random
and greedy algorithms, the worst case occurs when every lane
change results in a collision (7 is the random number generated
by the random algorithm and represents the number of vehicles
allowed to change lanes using that algorithm). In contrast, the
least-slack first algorithm ensures that exactly one safe lane
change is performed at any point in time.



TABLE II: Worst case performance of different algorithms

Algorithm Number of collisions | Number of safe lane changes
Proposed 0 n,1<n<k
Random r 0
Greedy k 0
Least-Slack First 0 1

TABLE III: Best case performance of different algorithms

Algorithm Number of collisions | Number of safe lane changes
Proposed 0 k
Random 0 T
Greedy 0 k
Least-Slack First 0 1

The best-case scenarios for the proposed algorithm and the
least-slack first algorithm are the same as in the worst-case
scenarios. In the best case, using the random and greedy
algorithms will result in no collisions. Clearly, our proposed
technique never performs worse than the other algorithms and
has a much better performance in the worst-case scenario.

C. Simulation Results

The average lane change ratio for the different algorithms is
shown in Figure 7a. It is clear from the plots that our proposed
algorithm outperforms the baseline algorithms by a significant
margin. The maximum, minimum, and average percent im-
provements in lane change ratio of our method over the other
algorithms are shown in Table IV. Our proposed method has
the advantage of coordinating only safe lane changes, similar
to the least-slack first approach, without being as conservative.
In fact, the drawback of the least-slack first approach, i.e.,
allowing only one lane change at a time, becomes clear as
the number of vehicles increases. As expected, the greedy
and random algorithms perform better than the least-slack first
algorithm. However, neither method can guarantee safe lane
changes. Specifically, Figure 7b depicts the average collision
ratio for the algorithms. Both our method and the least-slack
first algorithm resulted in no collisions, while, as expected,
the greedy algorithm has the highest collision ratio. Based
on the results shown in Figure 7b, neither the greedy nor
random algorithms can be used in real-world settings due to
the potential accidents that may result from applying these
algorithms.

From the above data, it is clear that our proposed method
achieves the best performance in terms of lane changes and
collision avoidance. The average time overhead of our algo-
rithm compared to the other methods is shown in Figure 7c
based on the simulations conducted on an Intel i7 3.50 GHz

TABLE IV: Minimum, maximum, and average percent im-
provement of our proposed approach over the baseline algo-
rithms in terms of lane change ratio

% Improv. on Lane Change Ratio | Minimum | Maximum | Average
Greedy 423 108.7 67.6

Least-Slack First 50.5 2454.5 1385.8
Random 44.4 438.7 298.5

with 16 GB memory. Since our algorithm is the most sophis-
ticated, it is also the most time consuming approach.

To recap, the simulation data shows that our proposed
method can efficiently and effective manage gaps between
vehicles to allow for as many vehicles that need to change
lanes to do so without causing collisions. We intend to improve
the efficiency of our algorithm in future work. That said, the
method presented in this paper is appropriate for small to mid-
size lane change scenarios.

IX. CONCLUSION

This paper discussed the problem of lane change maximiza-
tion of automated vehicles in order to minimize the disruption
of traffic flow caused by lane changes. A distributed algorithm
was proposed to solve the problem. The key ideas behind
said algorithm are time slack calculations and the concept of
vehicle grouping. Simulation results show that the proposed
method increases the number of lane changes by up to 109-
2454% and 68-1386% on average compared to a number of
baseline algorithms.

The proposed work guarantees safe lane changes provided
that all vehicles are automated. In the scenarios where manual
vehicles share the roads, a different framework must be de-
veloped since drivers’ behaviors are vastly different from, and
far less predictable than, the behaviors of automated vehicles.
In addition, it would be useful to consider the urgency of a
vehicle that wishes to change lane in order to further minimize
the disruption of traffic flow. For instance, a vehicle needing to
take an exit should be given a higher priority. Finally, while it
is helpful to maximize the number of lane changes to alleviate
its disruptive effects on traffic flow, the problem of deciding
whether an automated vehicle should change lanes instead of
speeding up or slowing down in order to maximize throughput
needs to be studied.
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