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Abstract—In a distributed real-time system, transactions are
executed on a number of processors and must complete by their
end-to-end deadlines. Without considering resource competition
among different transactions on a given processor, transaction
deadline requirements may be violated. We present a distributed
local deadline assignment approach that allows different transac-
tions to have different paths and where workloads on processors
may be dissimilar. Preliminary results indicate that our method
significantly improves upon existing approaches.

I. INTRODUCTION

Distributed real-time systems are widely employed in many
cyber-physical control applications such as vehicle control ap-
plication and multimedia communication application (e.g., [6],
[13], [20]). Such systems typically require that a series of
jobs be executed on a chain of processors and be completed
within some end-to-end deadlines. This sequence of jobs is
defined as a transaction and is periodically released. Resource
competition among jobs from different transactions on a
shared processor could severely increase job response times,
potentially resulting in end-to-end deadline misses. Therefore,
it is important to assign priorities to jobs or transactions on
each processor in order to guarantee the timing requirements
of the transactions in a distributed real-time system.

There are some recent papers on the priority assignment of
periodic transactions or jobs in a distributed real-time system.
Some assign priority to jobs based on their absolute end-to-end
deadlines (e.g., [8], [10]), which is ineffective if different trans-
actions have different paths and workloads on processors are
quite dissimilar. Other local deadline assignment approaches
are based on the earliest deadline first (EDF) scheduling
algorithm, e.g., a slicing technique based heuristic [11], a
method that exploits the execution time distributions of jobs
along transaction paths [2], an on-line method based on the
window-constrained scheduling [19], and a distributed method
based on the jobs’ precedence [17]. However, none of these
methods can guarantee that jobs on a shared processor are
schedulable, which may lead to eventual end-to-end deadline
misses. To ensure job feasibility, the work in [12] employs the
necessary and sufficient condition in [1] to assign local dead-
lines. However, the schedulability condition employed in [12]
is not only pessimistic by assuming that the transactions are
synchronized, but also extremely time consuming. The authors

in [18] propose minimizing transaction resource requirements
but this approach only works well for a single transaction.

In addition to the study of local deadline assignments,
there are published work that focus on the schedulability
analysis of transactions in distributed real-time systems. The
work in [15] and [16] study how to compute the time de-
mand bound function of transactions under EDF, while [7],
[9] and [14] propose methods to compute static worst case
response times for systems scheduled under fixed priority and
EDF scheduling, respectively. The approach in [8] and [10]
transforms the distributed real-time system schedulability test
into uniprocessor schedulability test. Most of the feasibility
analysis based methods are extremely time consuming and not
suitable for online use, while some are only for fixed priority
scheduling, which may under-utilize resources compared with
EDF. In addition, the schedulability test proposed in [8]
and [10] does not work well if transactions have different paths
and the ratio of end-to-end deadlines to periods of jobs is much
larger than the number of stages.

In this paper, we propose a distributed local deadline assign-
ment approach based on the necessary and sufficient condition
proposed in [4] and [5]. Our approach exploits the execution
information on adjacent processors to find a feasible local
deadline assignment. Our optimization approach, however, can
be too time consuming for online use. We are in the process
of designing an efficient heuristic. Preliminary results indicate
that our approach performs much better than existing work.

II. PRELIMINARIES

We first introduce some notations and scheduling properties.
Afterwards, some motivations for our problem are presented.

A. System Model

We consider a distributed real-time system, which needs
to handle a set of real-time transactions. Each transaction
periodically releases a job τi which is characterized by DE2E

i

and Mi, where DE2E
i denotes the absolute end-to-end deadline

of τi and Mi is the number of stages that τi traverses. In the
system, each job τi is broken into a series of jobs executing
at different stages, and the job running at stage k is denoted
as τi,k. Each job τi,k is described by its absolute release time
Ri,k, absolute deadline Di,k, and execution time Ci,k. In this
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(a) Notations for a transaction.

(b) A teleconferencing application con-
sisting of video and audio streams [3].

Fig. 1. Notations and example transactions.

paper, we assume that Ri,k = Di,k−1. Figure 1(a) shows an
example of a job τi,k with its execution times, release times,
and local deadlines at different stages.

Similar to the transaction models in [8], [10], we assume
that there is an execution order for all the processors, i.e.,
processor Vx should appear before processor Vy in any job’s
path that contains processors Vx and Vy . For example, Figure
1(b) shows a teleconferencing application presented in [3],
[13], which consists of video and audio stream processing,
where the video stream and the audio stream have almost
the same path except that the audio stream completes its
processing in a DSP component after finishing its execution
on a PC computer. We refer to any processor Vx having
the execution order earlier (later) than Vy as an upstream
(downstream) processor of Vy . A processor Vx has a set Ω
of jobs that traverse it (i.e., are executed on it). We use
τi,k(i,x) ∈ Ω(Vx) to signify that job τi,k(i,x) at stage k(i, x)
is on processor Vx. (The function k(i, x) returns the integer
denoting the stage number when τi executes on Vx.)

One way to meet transaction end-to-end deadlines is to
assign local job deadlines such that all jobs on a given
processor are schedulable and that the local job deadline of
the last stage is less than or equal to the respective end-to-
end deadline. To ensure that enough time is left for jobs at
later stages, we define the time slack of τi,k as the difference
between the end-to-end deadline relative to Ri,k+1 and the
sum of the execution times from stage k + 1 to stage Mi,∑Mi

m=k+1 Ci,m , i.e.,

Si,k = DE2E
i −Ri,k+1 −

Mi∑

m=k+1

Ci,m. (1)

The time slack gives information on the longest delay that a
job can endure from the current stage to the job’s final stage
without violating its end-to-end deadline. Maximizing the time
slack of each job on any processor gives the best opportunity
to satisfy the end-to-end deadline requirements.

We assume that EDF is used on each processor since it
is optimal in terms of meeting the deadline requirements
for a single processor. Each job should complete execution
at the last stage within its end-to-end deadline. However,
preemptions on processors with different workloads along the
job’s path may cause some jobs to have a long response time
at some stages and eventually miss their end-to-end deadlines.
Our problem, then, is to minimize the response times of jobs at
each stage by intelligently assigning local deadlines to them.
A necessary and sufficient condition for schedulability under
EDF on a uniprocessor is given below.

Theorem 1. [4], [5] The job set Ω(Vx) can be scheduled by
EDF if and only if ∀τi,k(i,x), τj,k(j,x) ∈ Ω(Vx), Ri,k(i,x) ≤
Dj,k(j,x),

Dj,k(j,x) −Ri,k(i,x) ≥
∑

τr,α(r,x),
Rr,α(r,x)≥Ri,k(i,x),
Dr,α(r,x)≤Dj,k(j,x)

Cr,α(r,x). (2)

B. Motivations

We use a simple distributed real-time system to illustrate
the deficiencies of existing approaches in satisfying the real-
time requirements of transactions. The example application
contains 2 transactions; their computation times and end-to-
end deadlines are shown from columns 2 to 5 in Table I.

We consider two representative priority assignment meth-
ods: JFP and EDP. In a job-level fixed priority based method
(JFP), the job’s priority is assigned and fixed according to
its absolute end-to-end deadline [8], [10]. In an end-to-end
deadline partition based method (EDP), both the end-to-end
deadline and execution times of each transaction at different
stages are considered so as to guarantee the individual trans-
action’s end-to-end deadline [2].

In our example, the transactions each release a job, τ1 and
τ2, at time 0 onto processor 1. Both jobs traverse processors 1,
2, 3 and 4 sequentially. The local deadlines at each processor
assigned by EDP (and resultant job response times by applying
JFP and EDP) are the first value in columns 6 and 7 (first two
values in columns 8 and 9) of Table I. For example, job τ1

has its local absolute deadline 111 and response time 170 on
processor 1 by applying EDP. Using JFP, job τ1 completes its
execution at stage 4 at time 1400, which is much longer than
its end-to-end deadline. EDP performs a little better than JFP
in reducing the response time of job τ1, but still causes τ1 to
miss its end-to-end deadline. Since JFP ignores the workload
of each job on different processors along its path, it may
assign a low priority to a job with large computation times
in the remaining stages and cause the job to miss its end-to-
end deadline. On the other hand, EDP ignores the resource
competition among different jobs on a shared processor and
causes both the local and end-to-end deadlines to be missed.

Suppose there exists an algorithm that considers both the
workloads along a transaction’s path and resource competition
among different jobs on a shared processor, both jobs τ1 and τ2

can meet all the deadlines. If this algorithm produces the local
deadlines of jobs τ1 and τ2 as shown by the second values in



TABLE I
A MOTIVATING EXAMPLE CONTAINING TWO TRANSACTIONS THAT TRAVERSE FOUR PROCESSORS

Job τ1 Job τ2 Local Deadline Assignment Response Time
Processor Execution End-to-End Execution End-to-End EDP / OLDA JFP / EDP / OLDA

Name Time Deadline Time Deadline Job τ1 Job τ2 Job τ1 Job τ2
Processor 1 100 NA 70 NA 111 / 100 90 / 170 170 / 170 / 100 70 / 70 / 170
Processor 2 200 NA 430 NA 331 / 300 663 / 730 700 / 370 / 300 500 / 700 / 730
Processor 3 100 NA 100 NA 441 / 400 797 / 830 800 / 470 / 400 600 / 800 / 830
Processor 4 600 1100 100 930 1100 / 1100 930 / 930 1400 / 1170 / 1100 700 / 900 / 930

columns 6 and 7 and the resultant response times are as given
by the third values in columns 8 and 9 of Table I, then the
end-to-end deadlines can all be satisfied. For example, job τ1

may have its local absolute deadline 100 and response time
100 on processor 1, and complete its execution at the last stage
at time 1100. Our effort is to design such an algorithm.

III. OUR APPROACH

A. Problem Formulation

As shown by the motivating example in Section II-B, the
probability that jobs meet their end-to-end deadlines can be
greatly increased if we assign appropriate local deadlines to
the jobs on different processors. We propose to accomplish this
with an online approach. The general idea of our online local
deadline assignment method is as follows. Every time a new
job arrives on some processor Vx, we reassign local deadlines
to jobs on each processor starting with Vx. (In case of ties, the
first processor in the total order of execution where changes
occur is the starting point.) The problem of assigning local
job deadlines is formulated as a mathematical programming
problem aiming to maximize the time slack as defined in
(1). The mathematic programming problem is then solved
efficiently using an online heuristic. The process is repeated
until all the processors have been handled. In our approach,
we not only tackle the resource competition among different
jobs on a shared processor, but also efficiently coordinate the
local deadline distribution of a job at different stages along
the transaction’s path.

In the time slack maximization problem, our goal is to
determine the local deadline Di,k for job τi,k such that the
end-to-end deadline of τi is met, and the job set Ω(Va) on any
processor Va is schedulable. We wish to maximize the time
slack of each job as given in (1) subject to the schedulability
constraints as given in (2) while considering the system model
given in Section II-A. Specifically, for processor Vx,

max: min
τi,k(i,x)∈Ω(Vx)



DE2E

i −Di,k(i,x) −
Mi∑

m=k(i,x)+1

Ci,m




(3)

s.t. Di,k(i,x)−1 + Ci,k(i,x) ≤ Di,k(i,x) ≤ DE2E
i −

Mi∑

m=k(i,x)+1

Ci,m, ∀τi,k(i,x) ∈ Ω(Vx) (4)

Di,k(i,x) −Dj,k(j,x)−1 ≥
∑

τr,k(r,x)∈Ω(Vx),
Dr,k(r,x)−1≥Dj,k(j,x)−1,

Dr,k(r,x)≤Di,k(i,x)

Cr,k(r,x),

∀τj,k(j,x), τi,k(i,x) ∈ Ω(Vx). (5)

The objective function in (3) maximizes the minimum time
slack of all the jobs executed on Va. Constraints (4)–(5)
are used to specify schedulability requirements. Specifically,
constraint (4) bounds the local deadline of jobs execution on
Va by the completion time of the job (left side of (4)) and the
latest start time of the immediate next stage (right side of (4)).
Note that Di,k(i,a)−1 is the release time of τi,k(i,a). Constraint
(5) is simply a restatement of (2).

The problem with the above mathematical programming
formulation is that since the local deadlines are decision vari-
ables in constraint (5), the summation terms on the right hand
side are variables and the given mathematical programming
problem cannot be straightforwardly solved. To address this
problem, we introduce Corollary 1.

Corollary 1. The job set Ω(Vx) can be scheduled by EDF if
and only if

max
τi,k(i,x)∈ω(Vx)

{Di,k(i,x)} − min
τi,k(i,x)∈ω(Vx)

{Di,k(i,x)−1} ≥
∑

τi,k(i,x)∈ω(Vx)

Ci,k(i,x),∀ω(Vx) ⊆ Ω(Vx). (6)

In Corollary 1, ω(Vx) is a subset of Ω(Vx),
minτi,k(i,x)∈ω(Vx){Di,k(i,x)−1} is the minimum deadline
of jobs in ω(Vx), and maxτi,k(i,x)∈ω(Vx){Di,k(i,x)} is
the maximum deadline of jobs in ω(Vx). According
to Theorem 1, the job set ω(Vx) is feasible if
and only if the required computation demand∑

τi,k(i,x)∈ω(Vx) Ci,k(i,x) inside the time interval[
minτi,k(i,x)∈ω(Vx){Di,k(i,x)−1},maxτi,k(i,x)∈ω(Vx){Di,k(i,x)}

]

is less than or equal to the length of that interval,
∀ω(Vx) ∈ Ω(Vx). Since the release times of jobs have
been decided when computing the local deadlines, the
summation terms on the right hand side in constraint (6) are
constant, and constraint (6) can now be used to replace (5).

Although it is now possible to solve the time slack maxi-
mization problem using the formulation in (3), (4), and (6),
a solution found may not be feasible at later stages since
execution information of jobs on downstream processors are
not considered and such jobs may miss their deadlines when
trying to compete for resources with other jobs. In other words,
because the mathematical programming formulation in (3), (4),
and (6) only considers information relevant to the local node,
it may greedily assign too much slack for jobs that do not
require it instead of allocating such time slack to jobs that
need it the most.



To tackle this problem, we consider job execution infor-
mation on downstream processors when assigning deadlines
of jobs on upstream processors, as stated in the following
corollary.

Corollary 2. If the job set Ω(Vy) can be scheduled by EDF,
then,

max
τi∈Φ(Vx,Vy)

{DE2E
i −

Mi∑

m=k(i,y)+1

Ci,m}−

min
τi∈

Φ(Vx,Vy)

{Di,k(i,x) + Ĉ} ≥
∑
τi∈

Φ(Vx,Vy)

Ci,k(i,y),

where

Ĉ =

{∑k(i,y)−1
m=k(i,x)+1 Ci,m : k(i, y) ≥ k(i, x) + 2

0 : k(i, y) = k(i, x) + 1
,

Φ(Vx, Vy) = Ω(Vx) ∩ Ω(Vy). (7)

The corollary complements Corollary 1 in that it con-
siders job schedulability of downstream processors in or-
der to make local decisions based on a global view. In
constraint (7), the job set Φ(Vx, Vy) contains all the jobs
that are executed not only on processor Vx, but also on
processor Vy , which is a downstream processor of Vx.
The term min τi∈

Φ(Vx,Vy)
{Di,k(i,x) + Ĉ} is the lower bound

on the minimum deadline of the jobs in Φ(Vx, Vy), while
maxτi∈Φ(Vx,Vy){DE2E

i − ∑Mi

m=k(i,y)+1 Ci,m} is the upper
bound on the maximum deadline of the jobs in Φ(Vx, Vy). Ac-
cording to Theorem 1, if the job set Φ(Vx, Vy) is schedulable
on processor Vy , constraint (7) should be satisfied. Constraint
(7) can be used in conjunction with constraints (4) and (6) to
exploit execution information of downstream processors.

Although it is now possible to solve this optimization
problem, constraint (6) must be checked for all 2|Ω(Vx)| subsets
of Ω(Vx), which makes searching for the solution complex
and unsuitable for online use. We are working on devising a
heuristic to solve the problem. Our heuristic aims to assign
local absolute deadlines to jobs on any processor with time
complexity O(|Ω(Va)|2), which would be efficient enough for
online use. In addition, we intend to fully exploit execution
information of downstream processors to guarantee the end-
to-end deadlines of all the jobs.

IV. SUMMARY AND FUTURE WORK

We have presented a novel local deadline assignment ap-
proach to guarantee end-to-end deadlines of transactions in
a distributed real-time system. The approach formulates the
local deadline assignment problem as an optimization prob-
lem, which is effective even when different transactions have
different paths and the workloads on different processors are
dissimilar. Based on several key observations, we are designing
a heuristic to solve the problem efficiently. The efficiency of
the heuristic is key in a distributed on-line framework where
local deadlines are assigned to newly arrived jobs or those
predicted to arrive shortly. In addition, we would generalize

our heuristic to handle situations where transactions have
random paths in the system without any limitations. Finally,
we plan on implementing our approach in a real-time operating
system, and compare it with existing methods.
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