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Abstract—In a distributed real-time system (DRTS), jobs are often executed on a number of processors and must complete by their
end-to-end deadlines. Job deadline requirements may be violated if resource competition among different jobs on a given processor is
not considered. This paper introduces a distributed, locally optimal algorithm to assign local deadlines to the jobs on each processor
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schedulability results are achieved by the algorithm since disparate workloads among the processors due to competing jobs having
different paths are considered. Given its distributed nature, the proposed algorithm is adaptive to dynamic changes of the applications
and avoids the overhead of global clock synchronization. In order to make the proposed algorithm more practical, two derivatives of
the algorithm are proposed and compared. Simulation results based on randomly generated workloads indicate that the proposed
approach outperforms existing work both in terms of the number of feasible jobs (between 51% and 313% on average) and the number
of feasible task sets (between 12% and 71% on average).
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1 INTRODUCTION
Distributed soft real-time systems are widely used in cyber-
physical applications such as the multimedia [14], [18],
telecommunication [23], and automatic control and monitoring
systems [20]. Since such systems often experience large vari-
ations in terms of their operating environments, a number of
task deadlines may be missed without severely degrading per-
formance. The scale of these distributed soft real-time systems
often prohibits a centralized resource management approach.
Designing low-overhead, distributed scheduling solutions is
critical to a reliable operation of such systems.

A DRTS contains a set of tasks periodically or aperiodically
releasing jobs which typically have end-to-end deadlines. Each
job is composed of a set of sub-jobs that are executed on dif-
ferent processors. Since different tasks may require execution
on different sets of processors, there may be high resource
competition among sub-jobs on a given processor, which could
severely increase job response times, potentially resulting
in end-to-end deadline misses. Although the distributed soft
real-time system allows some jobs to miss their end-to-end
deadlines, frequent deadline misses can degrade the Quality
of Service (QoS) of the system. Therefore, it is important to
properly assign local sub-job priorities in order to meet as
many job deadlines as possible.

1.1 Related Work
A number of recent papers investigated the sub-job priority
assignment problem for DRTSs. Most of the local-deadline
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assignment approaches [5], [17], [28] divide the end-to-end
deadline of a job into segments to be used as local deadlines
by the processors that execute the sub-jobs. The division may
depend on the number of processors on which the sub-job
is executed [28] or the execution time distribution of the
job among the processors [5], [17]. The local deadlines then
dictate sub-job priorities according to the earliest-deadline-
first (EDF) scheduling policy [6], [22]. While efficient, such
approaches [5], [17], [28] do not consider resource competition
of different sub-jobs on a processor, which may lead to local
deadline misses and eventually end-to-end deadline violations.

To ensure the schedulability of the tasks on each processor,
some work combines the local-deadline assignment problem
with feasibility analysis so that the resulting deadline as-
signment is guaranteed to be schedulable. The approaches
proposed in [13], [26] assign local deadlines to the sub-
jobs on-line by considering the schedulability of sub-jobs on
each processor in a distributed manner. The approach [13] is
based on a strong assumption that each processor knows the
local release times and upper bounds on the local deadlines
of all the future sub-jobs, which may be impractical for
real-world applications. In [26], the absolute local deadline
of each sub-job is derived on-line based on the sub-job
completion time on the preceding processors and the given
relative local deadline of each subtask. However, the work
can not handle the situation where the relative local deadlines
of subtasks are not given off-line. In contrast, the works
in [19], [24], [27] assign intermediate deadlines to subtasks
and consider resource contention among subtasks off-line.
The schedulability condition used in work [19] (from [21])
utilizes the ratio of subtask execution time over subtask local
deadline in the schedulability analysis. According to [6], this
condition can be very pessimistic in testing the schedulability
of subtask set when the subtask period is not equal to the
subtask local deadline or the subtask is not periodic. The
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work in [24] employs the feasibility condition from [2] to
assign local deadlines to subtasks on each processor in an off-
line, iterative manner. The drawback of the approach is that
it is time consuming and cannot adapt to dynamic changes
in applications. In addition, the analysis assumes that all the
periodic subtasks are synchronized, which is pessimistic in
testing the schedulability of subtask set. The authors in [27]
proposed a local-deadline assignment scheme to minimize
processor resource requirements for a single task, yet many
DRTSs need to execute multiple tasks.

1.2 Contributions
To address the shortcomings of existing work, we present an
on-line distributed approach which combines local-deadline
assignment with feasibility analysis to meet as many appli-
cations’ end-to-end deadline requirements as possible in a
distributed soft real-time system. Since the proposed approach
is targeted towards soft real-time systems, it supports possibly
infeasible applications. By extending our previous work [13],
our local-deadline assignment algorithm supports soft real-
time applications which can be modeled as a directed acyclic
graph (DAG) and partitioned onto processors by whichever
means. Our general application model covers a wide range
of cyber-physical systems, e.g., multimedia system, data pro-
cessing back-end systems, signal processing systems, control
systems and wireless network systems.

In order to efficiently solve the local-deadline assignment
problem, we formulate the local-deadline assignment problem
for a given processor as a mixed integer linear programming
(MILP) problem. We further introduce a locally optimal algo-
rithm that can solve the MILP based local-deadline assignment
problem in O(N4) time, where N is the number of sub-jobs
executed by the processor. We should point out that the locally
optimal solution may not be a globally optimal solution for the
DRTS. Given the algorithm’s distributed nature, the proposed
algorithm avoids the overhead of global clock synchronization.
In addition, the observations made in the proofs reveal several
interesting properties (such as when a busy time interval
occurs) for some special sub-job subsets used in our algorithm
and can be applied to similar feasibility studies.

Although the local-deadline assignment problem can be
solved efficiently and effectively by the canonical version
of our algorithm, it is based on the strong assumption that
each processor knows the local release times and the local
deadline upper bounds of all the future sub-jobs as in [13].
Fundamentally, the canonical version of our algorithm is an
off-line algorithm. To relax this assumption and make our
algorithm practical for real-world applications, we propose
two derivatives of our algorithm. In the first derivative, each
processor only considers the currently active local sub-jobs,
which are released (ready to be executed) but have not been
finished. In the second derivative, the processor employs a
prediction mechanism to estimate the timing information of
future sub-jobs in order to further exploit the capability of the
ideal algorithm to improve system performance. We prove that
the first derivative can find the same solution to that generated
by the canonical version of our algorithm if both solve the
same set of sub-jobs. Additionally, we discuss other practical

considerations such as communication among processors and
investigate the time overhead on the performance of the
system. Since our algorithm needs to be run upon each release
of a sub-job, the time overhead of the proposed algorithm grow
relatively quickly as the number of sub-jobs on each processor
increases. Thus, our algorithm is suitable for DRTSs with the
number of active sub-jobs in the order of tens. Such DRTSs
often appear in avionics and automotive applications.

1.3 Organization
The rest of the paper is organized as follows. Section 2
provides the system model and motivations for our work.
Section 3 describes our general approach as well as the
MILP formulation for local-deadline assignment. Section 4
presents the canonical version of our algorithm to solve the
local-deadline assignment problem. Section 5 presents two
derivatives of our algorithm. Section 6 discusses the commu-
nication mechanism employed by DRTSs to support OLDA
and the influence of time overhead by OLDA on the system
performance. Experimental results are presented and analyzed
in Section 7. Section 8 concludes the paper.

2 PRELIMINARIES

Below, we first introduce the system model and scheduling
properties. We then provide motivations for our work.

2.1 System Model
We consider a DRTS where a set of real-time tasks arrive
either periodically or aperiodically and require execution on
an arbitrary sequence of processors. Each task Tn is composed
of a set of subtasks Tn,k and has a relative end-to-end deadline
Dn. Since our focus is on an on-line distributed local-deadline
assignment method, we only consider individual task and sub-
task instances, i.e., jobs and sub-jobs, respectively, without any
assumption on task periodicity. Job Ji is composed of Mi sub-
jobs Ji,k, k = 1, ...,Mi, where i and k are the index numbers of
job Ji and subtask Tn,k, respectively1. Figure 1 shows a DRTS
containing 2 jobs, J1 and J2, and each has 5 sub-jobs.

The precedence relationship among the sub-jobs of Ji is
given by a directed acyclic graph (DAG). If sub-job Ji,k′

cannot begin its execution until sub-job Ji,k has completed its
execution, Ji,k is a predecessor of Ji,k′ , and Ji,k′ is the successor
of Ji,k (denoted as Ji,k ≺ Ji,k′ ). Ji,k′ is an immediate successor
of Ji,k and Ji,k is an immediate predecessor of Ji,k′ (denoted
as Ji,k 4 Ji,k′ ) if Ji,k is the predecessor of Ji,k′ and no job Ji,h
satisfies Ji,k ≺ Ji,h ≺ Ji,k′ . After all the immediate predecessors
of a sub-job Ji,k have finished their execution, sub-job Ji,k
is released and can start executing. A sub-job without any
predecessor is called an input sub-job and a sub-job without
any successor is called an output sub-job. A sub-job path Pi,k,k′

is a chain of successive sub-jobs starting with sub-job Ji,k and
ending with an output sub-job Ji,k′ . A sub-job may belong to
multiple paths. We let Pi,k be the set of paths Pi,k,k′ ’s starting
from Ji,k. See Figure 1 for examples of these definitions.

1. We omit a task’s index number n when referring to a sub-job Ji,k because
we only consider jobs and sub-jobs.



3

TABLE 1
Summary of Key Notations Used

Symbol Definition Symbol Definition
Vx A processor in the system Tn, Tn,k The nth task, and its kth subtask

Ψ(Vx) Set of subtasks to be executed on processor Vx Ω(Vx) Set of sub-jobs to be scheduled
Ji, Ji,k The ith job, and sub-job Ji,k Dn Relative end-to-end deadline of task Tn

Di, Absolute end-to-end deadline of job Ji Ri Release time of job Ji
di,k Local deadline of sub-job Ji,k ri,k Release time of sub-job Ji,k

UBi,k Local deadline upper bound of sub-job Ji,k si,k Time slack of sub-job Ji,k
A sub-job path starting from Ji,k and ending with Ci,k The worst-case execution time of sub-job Ji,k

Pi,k,k′ , Pi,k output sub-job Ji,k′ , and the set of all the Ji,k’s paths Ccri
i,k Critical execution time of sub-job Ji,k (See (1))

J1

Processor V1

J1,1

Processor V2

J1,2

Processor V3

Processor V4

J1,3

J1,4 J1,5

Processor V5

J2,1 J2,2

J2,4 J2,3J2,5

J2

J2

J1

Fig. 1. An example system containing two jobs, each with
5 sub-jobs being executed on 5 processors. In the exam-
ple, J1,1 ≼ J1,2 ≼ J1,3, J1,1 ≼ J1,4 ≼ J1,5 ≼ J1,3, J2,1 ≼ J2,4 ≼ J2,5,
J2,2 ≼ J2,3, J1,1, J2,1, J2,2 are input sub-jobs, and J1,3, J2,5,
J2,3 are output sub-jobs.

Job Ji is released at time Ri, and must be completed by its
absolute end-to-end deadline, Di, which is equal to Ri +Dn.
All the input sub-jobs of Ji are released at time Ri, and all the
output sub-jobs of Ji must be completed by time Di. The worst-
case execution time of Ji,k is Ci,k, and Ji,k is associated with
an absolute release time ri,k and absolute local deadline di,k,
both of which are to be determined during the local-deadline
assignment process. (We adopt the convention of using upper
letters to indicate known values and lower letters for variables.)

We consider a multiprocessor system, where each processor
Vx has a set Ω(Vx) of sub-jobs. We use Ji,k ∈ Ω(Vx) to indicate
that sub-job Ji,k, an instance of subtask Tn,k, is executed on
processor Vx. Subtask Tn,k belongs to set Ψ(Vx) of subtasks
that reside on Vx, i.e., Tn,k ∈Ψ(Vx). Note that we do not assume
any execution order among the processors in the distributed
system. That is, processor Vx may appear before processor
Vy in a sub-job’s path while the order of the two processors
may be reversed in another sub-job’s path. In Figure 1, we
have 5 processors, where J1,1,J2,5 ∈ Ω(V1), J1,2,J2,4 ∈ Ω(V2),
J1,3,J2,3 ∈ Ω(V3), J1,4,J2,1 ∈ Ω(V4), and J1,5,J2,2 ∈ Ω(V5).

One way to meet the jobs’ end-to-end deadlines is to assign
local deadlines such that all the sub-jobs on every processor
are schedulable and that the local deadlines of all the output
sub-jobs are less than or equal to the respective end-to-end
deadlines. In order to ensure that end-to-end deadlines are
not violated, it is important for predecessor sub-jobs not to

overuse their shares of slacks and to leave enough time for
successor sub-jobs. We define the critical execution time Ccri

i,k
as the longest execution time among all the paths in Pi,k, i.e.,

Ccri
i,k = max

Pi,k,k′∈Pi,k
∑

∀Ji,h∈Pi,k,k′
Ji,k≺Ji,h

Ci,h. (1)

Using the definition of the critical execution time Ccri
i,k , we

define the time slack of Ji,k as the difference between Di
relative to di,k and Ccri

i,k , i.e.,

si,k = Di −di,k −Ccri
i,k . (2)

The time slack provides information on the longest delay that
a job can endure after the execution of sub-job Ji,k for all of the
respective output sub-jobs to meet their end-to-end deadlines.
By using the end-to-end deadline and the critical execution
time of the sub-job Ji,k, we define the upper bound on the
local deadline of Ji,k as

UBi,k = Di −Ccri
i,k , (3)

which gives the maximum allowable value for the local dead-
line of Ji,k. According to (2) and (3), we see that maximizing
the time slack of each sub-job on any processor provides the
best opportunity for each sub-job to meet its local deadline,
and for each job to satisfy its end-to-end deadline requirement.
Table 1 presents the notations and definitions of the parameters
and variables used throughout the paper.

We assume that EDF [6] is used on each processor since it is
optimal in terms of meeting job deadlines for a uniprocessor2.
A necessary and sufficient condition for schedulability under
EDF on a uniprocessor is restated below with the notation
introduced earlier.

Theorem 1. [8], [9] Sub-job set Ω(Vx) can be scheduled by
EDF if and only if ∀Ji,k,J j,h ∈ Ω(Vx), ri,k ≤ d j,h,

d j,h − ri,k ≥ ∑
∀Jp,q∈Ω(Vx),

rp,q≥ri,k,
dp,q≤d j,h

Cp,q. (4)

2.2 Motivations

We use a simple DRTS to illustrate the drawbacks of existing
approaches in terms of satisfying the real-time requirements.
The example application contains 2 jobs, J1 and J2, and both
jobs are composed of a chain of four sub-jobs, which are

2. This does not imply that EDF is optimal for distributed systems.
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TABLE 2
A Motivating Example Containing Two Jobs that Traverse Four Processors

Job J1 Job J2 Local-Deadline Assignment Response Time
Processor Execution End-to-End Execution End-to-End BBW / OLDA BBW / JA / OLDA

Name Time Deadline Time Deadline Job J1 Job J2 Job J1 Job J2
Processor V1 100 N/A 70 N/A 111 / 100 90 / 170 170 / 170 / 100 70 / 70 / 170
Processor V2 200 N/A 430 N/A 331 / 300 663 / 730 370 / 700 / 300 700 / 500 / 730
Processor V3 100 N/A 100 N/A 441 / 400 797 / 830 470 / 800 / 400 800 / 600 / 830
Processor V4 600 1100 100 930 1100 / 1100 930 / 930 1170 / 1400 / 1100 900 / 700 / 930

sequentially executed on four processors, V1,V2,V3 and V4. The
sub-jobs’ execution times and the jobs’ end-to-end deadlines
are shown in columns 2 to 5 in Table 2.

We consider two representative priority assignment meth-
ods: JA [15], [16] and BBW [5]. JA is a job-level fixed-priority
based approach, employed by Jayachandran and Abdelzaher
in [15], [16]. BBW, proposed by Buttazzo, Bini and Wu, is
an end-to-end deadline partitioning based method. In [5], the
local-deadline assignment by BBW is used as an input to par-
titioning hard real-time tasks onto multiprocessors. However,
BBW can also be utilized to assign local deadlines to sub-
jobs in a distributed soft real-time system when tasks have
been partitioned onto different processors since it efficiently
decomposes the job’s end-to-end deadline in proportion to the
sub-job’s execution times on different processors.

In the motivating example, the local deadlines assigned
by BBW (and the resultant sub-job response times) at each
processor are indicated by the first value in columns 6 and
7 (and the first value in columns 8 and 9) of Table 2. The
resultant sub-job response times at each processor obtained
by JA are shown in the second value in columns 8 and 9.
For example, under BBW, the local absolute deadline of sub-
job J1,1 on processor V1 is 111 time units and the response
time is 170 time units. BBW causes job J1 to complete its
execution on processor V4 at time 1170 and miss its end-to-
end deadline by 70 time units. The reason for J1’s end-to-end
deadline miss is that BBW ignores the resource competition
on individual processors and does not make the best use of
the given resources, which results in an idle time interval
[470,700] on processor V3. JA performs much worse than
BBW in reducing the response time of job J1, and causes
sub-job J1,1 to complete its execution on processor V4 at time
1400. This is because job J1 is assigned a lower priority by
JA and is preempted by J2 on both processors V1 and V2. As a
result, J1 fails to meet its end-to-end deadline when its sub-job
J1,4 has a large execution time of 600 on processor V4.

If there exists an alternative local-deadline assignment
method that can consider both the workloads on a job’s
execution path and resource competition among different sub-
jobs on a shared processor, adopting such a method may result
in meeting the deadline requirements for both jobs J1 and J2.
We will present one such method, OLDA (Omniscient Local-
Deadline Assignment), in the subsequent sections. The new
local deadlines obtained by OLDA are shown as the second
values in columns 6 and 7 and the resultant response times are
as given by the third values in columns 8 and 9 in Table 2.
It is clear that this local-deadline assignment allows both jobs
to meet their end-to-end deadlines.

3 APPROACH

In this section, we provide a high-level overview of our ap-
proach and present the detailed MILP formulation for finding a
locally optimal local-deadline assignment. Since our objective
is to assign local deadlines to a set of sub-jobs on-line, we
will only use the concepts of jobs and sub-jobs from now on.

3.1 Overview
As shown in the last section, the probability that jobs meet
their end-to-end deadlines can be greatly increased if appro-
priate local deadlines are assigned to the sub-jobs on different
processors. Although it is possible to accomplish local sub-job
deadline assignment in a global manner using mathematical
programming or dynamic programming, such approaches incur
high computation overhead and are not suitable for on-line use.

We adopt a distributed, on-line approach to determine local
sub-job deadlines on each processor. At Algorithm 1, every

Algorithm 1 Distributed On-Line Approach in Processor Vx

1: Upon completing sub-job J j,h in Vx:
2: Send a message to Vy’s that are to execute J j,h′ ’s which satisfy

J j,h 4 J j,h′ and J j,h′ ∈ Ω(Vy)
3: Ω(Vx) = Ω(Vx)−{J j,h}
4: Execute J j′,h′ which satisfies d j′,h′ = minJi,k∈Ω(Vx){di,k}

5: Upon receiving a message on the completion of sub-job J j,h from
Vy:

6: Suspend the currently executing sub-job
7: Release J j,h′ ’s which satisfy J j,h 4 J j,h′ and J j,h′ ∈ Ω(Vy), and

calculate UB j,h′ ’s of J j,h′ ’s
8: Re-assign di,k’s to Ji,k’s in Vx
9: Update the dropped job record in Vx

10: Send an acknowledgement message to Vy
11: Execute J j′,h′ which satisfies d j′,h′ = minJi,k∈Ω(Vx){di,k}

12: Upon receiving an acknowledgement message from Vy:
13: Update the dropped job record in Vx

14: Upon dropping a subset of sub-jobs in Vx:
15: Update the dropped job record in Vx

time a new sub-job arrives at processor Vx, new deadlines are
assigned for both the newly arrived sub-job and current active
sub-jobs which are already in Vx and may have been partially
executed (Section 5.1). Upon the completion of a sub-job at Vx,
Vx sends a message to those downstream processors which are
to execute the immediate successors of the completed sub-job.
The downstream processors utilize the information contained
in the message to release new sub-jobs. Consider the example
shown in Figure 1. Suppose at time t, J2,4 arrives at V2 which
is executing J1,2. Processor V2 suspends the execution of J1,2
and assigns new local deadlines to J2,4 and J1,2. If at the same
time, J2,3 arrives at V3, V3 simultaneously assigns the new local
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deadlines to J2,3 and J1,3. If a feasible deadline assignment is
not found, a sub-job dropping policy (supplemental material)
is followed to remove a job from further processing. The drop
information is propagated to the subsequent processors using
some communication mechanism (Section 6.1).

The key to making the above distributed approach effective
lies in the design of an appropriate local-deadline assignment
algorithm to be run on each processor such that some specific
QoS metric for the DRTS is achieved, e.g., the number of
jobs dropped is minimized. In our framework, each processor
determines the local-deadline assignment to maximize the
minimum time slack of sub-jobs on the corresponding pro-
cessor. (Readers can see the explanation of this objective in
our previous work [13]). To achieve this goal, we formulate
an MILP problem to capture the local-deadline assignment on
each processor (Section 3.2). Then, we devise an exact off-line
algorithm that can solve the MILP problem in polynomial time
(more details in Section 4). The MILP problem and the off-
line algorithm provide a theoretical foundation for the practical
on-line local-deadline assignment algorithms (Section 5). It is
important to note that our overall framework is a heuristic
since the objective used by each processor to determine the
local-deadline assignment does not guarantee to always lead
to a globally optimal solution. (The local-deadline assignment
problem for DRTS is an NP-hard problem [3].) Below, we
present the MILP formulation for local-deadline assignment
as it forms the basis for our off-line algorithm.

3.2 Mathematical Programming Formulation
Assuming that the release times and upper bounds on the
local deadlines of all the sub-jobs are known, we capture the
problem as a constrained optimization problem given below:

max: min
Ji,k∈Ω(Vx)

{
Di −di,k −Ccri

i,k
}

(5)

s.t. ri,k +Ci,k ≤ di,k ≤UBi,k = Di −Ccri
i,k , ∀Ji,k ∈ Ω(Vx)

(6)

max
Ji,k∈ω(Vx)

{di,k}− min
Ji,k∈ω(Vx)

{ri,k}≥ ∑
∀Ji,k∈ω(Vx)

Ci,k,∀ω(Vx)⊆Ω(Vx).

(7)
Readers can refer to our previous work [13] to see the
explanation of the optimization problem formulation. The
details of transforming (5), (6) and (7) to expressions in an
MILP form are presented in the supplemental material.

If the release times of sub-jobs are known when computing
the local deadlines, the resulting problem specified by (5),
together with (6) and (7), can be solved by an MILP solver.
However, such a solver is too time consuming for on-line use
(see Section 7). In the next section, we introduce a polynomial
time algorithm to solve the MILP problem exactly.

4 OMNISCIENT LOCAL-DEADLINE ASSIGN-
MENT

In this section, we present the Omniscient Local-Deadline As-
signment (OLDA), the canonical version of our local-deadline
assignment algorithm, which solves the optimization problem
given in (5), (6) and (7) in O(N4) (where N is the number of

sub-jobs), assuming that the release times of all the existing
and future sub-jobs are known a priori. Although OLDA is
an off-line algoirthm, it forms the basis of the desired on-
line algorithms (see Section 5). There are multiple challenges
in designing OLDA. The most obvious difficulty is how to
avoid checking the combinatorial number of subsets of Ω(Vx)
in constraint (7). Another challenge is how to maximize the
objective function in (5) while ensuring sub-job schedulability
and meeting all jobs’ end-to-end deadlines.

Below, we discuss how our algorithm overcomes these
challenges and describe the algorithm in detail along with the
theoretical foundations behind it. Unless explicitly noted, the
deadline of a sub-job in this section always means the local
deadline of the sub-job on the processor under consideration.

4.1 Base Subset and Base Sub-job

One key idea in OLDA is to construct a unique subset from a
given sub-job set Ω(Vx). Using this sub-job subset, OLDA can
determine the local deadline of at least one sub-job in Ω(Vx).
This local deadline is guaranteed to belong to an optimal
solution for the problem given in (5), (6) and (7). We refer to
this unique sub-job subset of Ω(Vx) as the base subset of Ω(Vx)
and define it as follows. We first describe sub-job subsets that
are candidates for the base subset of Ω(Vx). Subset ωc(Vx) is
a candidate for the base subset of Ω(Vx) if

dc,kc = min
Ji,k∈ωc(Vx)

{ri,k}+ ∑
∀Ji,k∈ωc(Vx)

Ci,k ≥ min
Ji,k∈ω(Vx)

{ri,k}

+ ∑
∀Ji,k∈ω(Vx)

Ci,k,∀ω(Vx)⊆ Ω(Vx),

where dc,kc is the earliest completion time of ωc(Vx).
We now formally define the base subset of Ω(Vx). Let
{ωc(Vx)|∀ωc(Vx) ⊆ Ω(Vx)} contain all the candidates of the
base subset.

Definition 1. ω∗(Vx) is a base subset of Ω(Vx), if it satisfies

min
Ji,k∈ω∗(Vx)

{ri,k}> min
Ji,k∈ω(Vx)

{ri,k},ω∗(Vx) ∈ {ωc(Vx)|∀ωc(Vx)

⊆ Ω(Vx)},∀ω(Vx) ∈ {ωc(Vx)|∀ωc(Vx)⊆ Ω(Vx)}.

The definition of the base subset of Ω(Vx) simply states that
the completion time of the sub-jobs in the base subset is no
less than that in any other sub-job subset in Ω(Vx) (such a
property of the base subset will be proved in Lemma 4). If
the completion times of all the sub-jobs in multiple subsets are
the same, the base subset is the subset which has the latest
released sub-job in Ω(Vx).

For a given base subset, determining which sub-job to
assign a deadline to and what value the deadline should
have constitutes the other key idea in OLDA. Recall that
our optimization goal is to maximize the sub-job time slacks.
Hence, we select this sub-job based on the local deadline upper
bounds of all the sub-jobs in the base subset. Let Jc,kc ∈ω∗(Vx)
be a candidate for the base sub-job if

UBc,kc ≥UBi,k ∀Ji,k ∈ ω∗(Vx).
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TABLE 3
A Sub-job Set Example

Sub-job ri,k Ci,k UBi,k
J1,1 0 2 35
J2,1 4 2 42
J3,1 5 2 39
J4,1 6 1 35

ω(Vx) minJi,k∈ω(Vx){ri,k}+∑∀Ji,k∈ω(Vx)Ci,k

{J1,1,J2,1,J3,1,J4,1} 7
{J2,1,J3,1,J4,1} (ω∗(Vx)) 9

{J3,1,J4,1} 8
{J4,1} 7

Let {Jc,kc |∀Jc,kc ∈ Ω(Vx)} contain all the candidates for the
base sub-job in ω∗(Vx). We refer to the selected sub-job as
the base sub-job and define it as follows.

Definition 2. J∗,k∗ ∈ {Jc,kc |∀Jc,kc ∈ Ω(Vx)} is a base sub-job
for sub-job set Ω(Vx), if it satisfies

(∗> i) or (∗= i and k∗ > k) ∀Ji,k ∈ {Jc,kc |∀Jc,kc ∈ Ω(Vx)}.

The base sub-job has the largest local deadline upper bound
among all the sub-jobs in the base subset. Ties are broken in
favour of the sub-job with the largest job identifier and then
in favour of the sub-job with the largest subtask identifier.

We use a simple example to illustrate how to find base
subset and base sub-job. Consider a sub-job set Ω(Vx) with
its timing parameters as shown in the top part of Table 3. It
is easy to verify that subset {J2,1,J3,1,J4,1} is the base subset
ω∗(Vx) (see the bottom part of Table 3), where d∗ is 9. Among
the three sub-jobs in ω∗(Vx), sub-job J2,1 is the base sub-job
according to Definition 2 since it has the largest local deadline
upper bound of 42. OLDA uses the base subset and base sub-
job to accomplish local-deadline assignment. The details of
OLDA is given in the next subsection.

4.2 OLDA Algorithm Design
Given a sub-job set Ω(Vx), OLDA first constructs the base
subset for the sub-job set. It then finds the base sub-job and
assigns a local deadline to that base sub-job. The base sub-
job is then removed from the sub-job set and the process is
repeated until all the sub-jobs have been assigned deadlines.

Algorithm 2 summarizes the main steps in OLDA. (Recall
that this algorithm is used by each processor in a distributed
manner, so the pseudocode is given for processor Vx.) The
inputs to OLDA are the sub-job set Ω(Vx) and the variable
Max Allowed Drop Num. Ω(Vx) contains all the active and
future sub-jobs Ji,k’s. Without loss of generality, a sub-job
is always associated with its local release time, execution
time, and local deadline upper bound, and the local deadline
upper bound of sub-job is computed before the call of OLDA.
Thus, we do not use the local release time, execution time
and local deadline upper bound as the input variables in
OLDA. The variable Max Allowed Drop Num is used in
Function Drop Sub Jobs(), which will be discussed in the
supplemental material. OLDA starts by initializing the set of
sub-job deadlines (Line 1) and sorting the given sub-jobs
in a non-decreasing order of their release times (Line 2),
which breaks ties in favour of the sub-job with the largest job
identifier and then in favour of the sub-job with the largest

Algorithm 2 OLDA(Ω(Vx), Max Allowed Drop Num)
1: d = /0
2: Ω(Vx) = Sort Sub Jobs(Ω(Vx))
3: while (Ω(Vx) ̸= /0) do
4: ω(Vx) = Ω(Vx)
5: ω∗(Vx) = Ω(Vx)
6: Max Deadline = 0
7: Temp Deadline = 0
8: while ω(Vx) ̸= /0 do
9: Temp Deadline = minJi,k∈ω(Vx){ri,k}+∑Ji,k∈ω(Vx){Ci,k}

10: if Temp Deadline ≥ Max Deadline then
11: Max Deadline = Temp Deadline
12: ω∗(Vx) = ω(Vx)
13: ω(Vx) = Remove Earliest Released Sub Job(ω(Vx))
14: J∗,k∗ = Find Base Sub Job(ω∗(Vx)) //Find base sub-job J∗,k∗

according to Definition 2
15: if (UB∗,k∗ ≥ Max Deadline) then
16: d∗,k∗ = Max Deadline
17: d = d

∪
{d∗,k∗}

18: Ω(Vx) = Ω(Vx)− J∗,k∗
19: else
20: Jdrop =Drop Sub Jobs(ω∗(Vx),Max Allowed Drop Num)

//Remove a subset of sub-jobs from ω∗(Vx) according
to some sub-job dropping policy, and return the subset
containing the dropped sub-jobs

21: d = /0
22: break
23: return d //d = {di,k}

subtask identifier. Then, the algorithm enters the main loop
spanning from Line 3 to Line 22. The first part in the main
loop (Lines 4–13) constructs the base subset ω∗(Vx) for the
given sub-job set and computes the desired deadline value
(Max Deadline) according to Definition 1. (Max Deadline is
in fact the completion time of all the sub-jobs in the base
subset, as will be shown in the next subsection.) The second
part of the main loop (Line 14) applies Definition 2 to find
the base sub-job in the base subset.

If the desired deadline value is smaller than or equal to
UB∗,k∗ of the base sub-job J∗,k∗ (Line 15), the third part of the
main loop (Lines 15–22) assigns the desired deadline value
to the base sub-job as its local deadline (denoted by d∗,k∗)
(Line 16), adds d∗,k∗ to the set of sub-job deadlines (Line 17),
and removes J∗,k∗ from Ω(Vx) (Line 18). This process is
repeated in the main loop until each sub-job in Ω(Vx) obtains
a local deadline. In the case where the desired deadline value
is larger than UB∗,k∗ (Line 19), at least one sub-job will miss
its deadline and a subset of sub-jobs Jdrop are removed from
the subset ω∗(Vx) based on some sub-job dropping policy
(Line 20).(The discussion on the sub-job dropping policy is
provided in the supplemental material.) Then, the set of sub-
job deadlines is set to be empty (Line 21) and OLDA exits
(Line 22). OLDA either returns the set of sub-job deadlines to
be used by the processor in performing EDF scheduling or an
empty set to processor Vx. In the latter case, Vx calls OLDA
repeatedly until a feasible solution is found or all the sub-jobs
in Ω(Vx) have been dropped. The time complexity of OLDA
is O(|Ω(Vx)|3), which is proved in Theorem 2, and a processor
takes O(|Ω(Vx)|4) time to solve a set Ω(Vx) using OLDA.

We use the example in Table 3 to illustrate the steps
taken by OLDA to assign local deadlines given sub-job set
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t

0 1 2 3 4 5 6 7 8 9 10

J1,1 J2,1 J3,1 J4,1 J3,1 J2,1

Fig. 2. The example of executing sub-jobs with local
deadlines assigned by OLDA

{J1,1,J2,1,J3,1,J4,1}. In the first iteration of the main loop,
OLDA finds the base subset {J2,1,J3,1,J4,1} and selects the
base sub-job J2,1. OLDA assigns the completion time of
all the sub-jobs in the base subset, 9, to J2,1 as its local
deadline. In the next iteration, OLDA works on sub-job set
{J1,1,J3,1,J4,1} and the process is repeated until all the sub-
jobs have been assigned local deadlines. In the example, the
local deadlines for sub-jobs J1,1, J2,1, J3,1 and J4,1 are 2, 9,
8 and 7, respectively. The base subset and base sub-job in
each iteration are shown in Table 4. A possible schedule for
sub-jobs J1,1, J2,1, J3,1 and J4,1 is shown in Figure 2.

It is worth noting that we assume that a processor knows
the release times and local deadline upper bounds of all the
future sub-jobs in OLDA (This assumption will be relaxed
in Section 5). Thus, OLDA only requires information known
upon a sub-job’s release (such as the maximum allowed
response time of a sub-job at the completion time of the
sub-job’s intermediate predecessor), which can be relayed
between processors with the support of a specific distributed
communication mechanism (Section 6). Therefore, OLDA
does not require global clock synchronization.
4.3 Optimality of OLDA Algorithm
We claim that OLDA solves the optimization problem given
by (5), (6) and (7). That is, if there exists a solution to
the problem, OLDA always finds it. Furthermore, if there is
no feasible solution to the problem, OLDA always identifies
such a case, i.e., drop a job following some sub-job dropping
policy. To support our claim, we first show that the local-
deadline assignment made by OLDA (when no sub-jobs are
dropped) satisfies the constraints in (6) and (7). This is given
in Lemmas 1 and 2, respectively.

Lemma 1. Given sub-job set Ω(Vx), let d∗
i,k be the local

deadline assigned by OLDA to Ji,k ∈ Ω(Vx). Then

ri,k +Ci,k ≤ d∗
i,k ≤ Di −Ccri

i,k ∀Ji,k ∈ Ω(Vx). (8)

Lemma 2. Given sub-job set Ω(Vx), let d∗
i,k be the local

deadline assigned by OLDA to Ji,k ∈ Ω(Vx). We have

max
Ji,k∈ω(Vx)

{d∗
i,k}− min

Ji,k∈ω(Vx)
{ri,k}≥ ∑

∀Ji,k∈ω(Vx)

Ci,k,∀ω(Vx)⊆Ω(Vx).

(9)

TABLE 4
Base Subset and Base Sub-job in Each Iteration

Iter. Number Sub-job Set Base Subset Base Sub-job
1 {J1,1,J2,1,J3,1,J4,1} {J2,1,J3,1,J4,1} J2,1
2 {J1,1,J3,1,J4,1} {J3,1,J4,1} J3,1
3 {J1,1,J4,1} {J4,1} J4,1
4 {J1,1} {J1,1} J1,1

To show that OLDA always identifies the case where there
is no feasible solution to the optimization problem, we observe
that OLDA always finds a local-deadline assignment without
dropping any job if there exists a feasible solution that satisfies
constraints (6) and (7). This is stated in the following lemma.

Lemma 3. Given sub-job set Ω(Vx), if there exists di,k for
every Ji,k ∈Ω(Vx) that satisfies (6) and (7), OLDA always finds
a feasible local-deadline assignment for every Ji,k ∈ Ω(Vx).

Proving that the local-deadline assignment made by OLDA
indeed maximizes the objective function in (5) requires an-
alyzing the relationship among the sub-jobs’ time slacks.
Since OLDA assigns sub-job local deadlines by identifying the
base sub-job in each base subset, a special property that the
base subset possesses greatly simplifies the analysis process.
Lemma 4 below summarizes this property.

Lemma 4. Let ω∗(Vx) be a base subset of sub-job set Ω(Vx)
and r∗ = minJi,k∈ω∗(Vx){ri,k}. Under the work-conserving EDF
policy, processor Vx is never idle once it starts to execute the
sub-jobs in ω∗(Vx) at r∗ and before it completes all the sub-
jobs in ω∗(Vx). In addition, the busy interval during which the
sub-jobs in ω∗(Vx) are executed is [r∗,r∗+∑∀Ji,k∈ω∗(Vx)Ci,k].
Furthermore, there is at least one sub-job unfinished at any
time instant within [r∗,r∗+∑∀Ji,k∈ω∗(Vx)Ci,k).

Based on Lemma 4, it can be proved that the local-deadline
assignment made by OLDA maximizes the objective func-
tion (5), which is stated in Theorem 2.

Theorem 2. Given sub-job set Ω(Vx), let d∗
i,k be the local

deadline assigned to each Ji,k ∈ Ω(Vx) by OLDA. Then d∗
i,k

maximizes the minimum time slack, {Di −di,k −Ccri
i,k }, among

all the sub-jobs executed on Vx, i.e.,

max: min
Ji,k∈Ω(Vx)

{
Di −di,k −Ccri

i,k
}
. (10)

Based on Theorem 2, we conclude that the solution found by
OLDA maximizes the objective function (10). Note that the
found solution may not be globally optimal for DRTS.

Based on Lemmas 1, 2, 3 and Theorem 2, we have the
following theorem.

Theorem 3. In O(|Ω(Vx)|3) time, OLDA returns a set of local
deadlines if and only if there exists a solution to the optimiza-
tion problem specified in (5), (6) and (7). Furthermore, the
returned set of local deadlines is a solution that maximizes
the objective function (5).

The importance of Theorem 3 is that the deadline assignment
problem can be solved exactly by OLDA in polynomial time
even though the original MILP formulation contains (|Ω(Vx)|+
2|Ω(Vx)|) constraints. Note that processor Vx needs O(|Ω(Vx)|4)
time to solve Ω(Vx) using OLDA since Vx may call OLDA for
at most |Ω(Vx)| number of times due to dropping sub-jobs.

5 MORE PRACTICAL VERSIONS OF OLDA
OLDA assumes that a processor knows the release times and
upper bounds on the local deadlines of all the future sub-jobs
on a given processor. For general DRTSs, this assumption may
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be too strong and hence OLDA may not be directly applicable
in certain real-world applications. In order to make OLDA
more practical, we propose below two derivatives of OLDA.

5.1 Active Local-Deadline Assignment

In this section, we present a local-deadline assignment algo-
rithm in which each processor considers only the active sub-
jobs. We refer to this new algorithm as ALDA. In ALDA,
sub-job set Ωa(Vx) contains only the active sub-jobs on the
processor when ALDA is invoked. Whenever a sub-job is
completed, it is removed from Ωa(Vx). Every time a new sub-
job arrives at the processor, the processor stops its current
execution and calls ALDA to determine the deadlines of all
the active sub-jobs. The remaining execution times of the
active sub-jobs, which is maintained by the processor, are
used by ALDA instead of the original execution times. Note
that ALDA only returns the solution of Ωa(Vx). For a given
sub-job set Ω(Vx) containing sub-jobs with different release
times, a sub-job can be assigned local deadlines by ALDA
multiple times from its release to its completion. This is
because multiple sub-jobs may be released during such a time
interval. Hence, the solution of Ω(Vx) by ALDA is a set of
local deadlines, {di,k}, where di,k is the last local deadline
assigned to each sub-job Ji,k ∈ Ω(Vx) by ALDA.

ALDA actually is very similar to OLDA in that both
algorithms need to find the base subset and the base sub-
job and then assign the local deadline to the base sub-job.
However, ALDA only considers all the active sub-jobs on the
processor, which possesses a special property. The property
can greatly reduce the time complexity of OLDA and is
summarized in Lemma 5.

Lemma 5. Given sub-job set Ωa(Vx), if all the sub-jobs are
ready for execution, the base subset ω∗(Vx) is just Ωa(Vx).

Based on Lemma 5, it costs ALDA a lower time overhead to
identify the base subset than that of OLDA.

The steps of ALDA are summarized in Algorithm 3. We
briefly discuss the key steps and omit the ones that are similar
to OLDA. The inputs to ALDA are the newly released sub-
job J j,h and the sub-job set Ωa(Vx) that contains all the active
sub-jobs that are already in Vx before the current invocation
of ALDA. The sub-jobs in Ωa(Vx) are sorted in the non-
decreasing order of the upper bound on the local deadline
of each sub-job in Ωa(Vx). Ties are broken in favour of the
sub-job with the largest job identifier and then in favour of the
sub-job with the largest subtask identifier. Since the sub-job set
Ωa(Vx) is the base subset according to Lemma 5, the sorting of
sub-jobs in Ωa(Vx) makes the tail sub-job in Ωa(Vx) the base
sub-job according to Definition 2. In addition, ALDA directly
calculates the desired local deadline value, Max Deadline, for
Ωa(Vx) according to Lemma 4 (Lines 4–6).

The algorithm then enters the main loop spanning from
Line 7 to Line 22. ALDA finds the base sub-job J∗,k∗ ,
which is the last sub-job of the sub-job set in Ωa(Vx) ac-
cording to Lemma 5 (Line 8). If the desired local deadline
value is smaller than or equal to UB∗,k∗ , ALDA updates
Max Deadline for the next iteration (Line 14). If the desired

Algorithm 3 ALDA(Ωa(Vx), J j,h)
1: Ωa(Vx) = Insert by Non Dec Local Deadline UB(Ωa(Vx),

J j,h) //Insert J j,h into the sub-job set in the non-decreasing
order of the upper bound on the local deadline of each sub-job
in Ωa(Vx)

2: d = /0
3: Ω′

(Vx) = /0
4: Max Deadline = 0
5: for (Ji,k ∈ Ωa(Vx)) do
6: Max Deadline = Max Deadline+Ci,k
7: while (Ωa(Vx) ̸= /0) do
8: J∗,k∗ = Tail(Ωa(Vx)) //Select the base sub-job which is the

last sub-job of the sub-job set in Ωa(Vx)
9: if (UB∗,k∗ ≥ Max Deadline) then

10: d∗,k∗ = Max Deadline
11: d = d

∪
{d∗,k∗}

12: Ωa(Vx) = Ωa(Vx)− J∗,k∗
13: Ω′

(Vx) = Ω′
(Vx)

∪
{J∗,k∗}

14: Max Deadline = Max Deadline−C∗,k∗
15: else
16: Jdrop = Drop Sub Jobs(Ωa(Vx)) // Remove a subset of

sub-jobs from Ωa(Vx) according to some sub-job dropping
policy, and return the subset containing the dropped sub-
jobs

17: Temp C = 0
18: for (Ji,k ∈ Jdrop) do
19: Temp C = Temp C+Ci,k
20: Max Deadline = Max Deadline−Temp C
21: for (Ji,k ∈ Ω′

(Vx)) do
22: di,k = di,k −Temp C
23: return d //d = {di,k}

local deadline value is larger than UB∗,k∗ of the base sub-
job J∗,k∗ , the total execution time of the removed sub-jobs,
Temp C, is calculated (Lines 17–19). Since the sub-jobs in
Jdrop are removed from the base subset Ωa(Vx), Temp C
is reduced from Max Deadline (Line 20). According to the
local-deadline assignment in ALDA (Lines 4–14), a sub-job
which is assigned its local deadline earlier will have a longer
local deadline than a sub-job being assigned its local deadline
later. This implies that a sub-job that has been moved to Ω′

(Vx)
will be completed after the sub-jobs currently still in Ωa(Vx).
Thus, after removing the sub-jobs in Jdrop from Ωa(Vx), each
sub-job in Ω′

(Vx) can be completed earlier by Temp C and
each previously assigned local deadline is reduced by Temp C
(Lines 21–22).The above process is repeated until each sub-
job in Ωa(Vx) either receives a deadline or is dropped. ALDA
eventually returns the set of sub-job deadlines to be used by
the processor in performing EDF based scheduling.

Since ALDA simplifies OLDA by only considering the
active sub-jobs on a local processor, all the lemmas and
theorems in Section 4.3 still hold for ALDA except for the
time complexity of ALDA. The time complexity of ALDA
is dominated by the main while loop starting at Line 7.
(Refer to Algorithm 3.) Every time a subset of sub-jobs are to
be removed from Ωa(Vx) (Line 16), OLDA needs to traverse
|Ωa(Vx)| number of sub-jobs in Function Drop Sub Jobs().
Hence, the time complexity of ALDA when handling |Ωa(Vx)|
number of sub-jobs on processor Vx is O(|Ωa(Vx)|2), where
|Ωa(Vx)| is the number of active sub-jobs on processor Vx.
Processor Vx calls ALDA every time a new sub-job from Ω(Vx)
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is released at Vx. Since |Ωa(Vx)| ≤ |Ω(Vx)|, processor Vx takes
O(|Ω(Vx)|3) time to solve a set Ω(Vx) using ALDA. Compared
with OLDA, ALDA is much more efficient in solving the
local-deadline assignment problem.

We show next that ALDA is equivalent to OLDA. First, we
have the following lemma to show that ALDA can solve the
sub-job set if and only if the sub-job set is schedulable.

Lemma 6. Let Ω(Vx) contain all the sub-jobs to be scheduled
by OLDA. If and only if there exists a schedulable solution for
Ω(Vx), ALDA can find a feasible solution for Ω(Vx).

Second, we have the following lemma to show that the
equivalence of the solutions found by ALDA and OLDA.

Lemma 7. The solutions found by ALDA and OLDA are the
same if Ω(Vx) is schedulable.

Since ALDA and OLDA are equivalent for schedulable sub-
job sets and we have proved the optimality of OLDA, ALDA
is also an optimal algorithm to solve the proposed problem.

Based on Theorem 3, Lemma 6 and Lemma 7, we have the
following theorem.

Theorem 4. In O(|Ω(Vx)|2) time, ALDA returns a set of local
deadlines if and only if there exists a solution to the optimiza-
tion problem specified in (5), (6) and (7). Furthermore, the
returned set of local deadlines is a solution that maximizes
the objective function (5).

Theorem 4 shows that ALDA is able to solve the local-
deadline assignment problem exactly in polynomial time,
which demonstrates the same performance to that of OLDA.

5.2 Workload Prediction Based Local-Deadline As-
signment
Although ALDA is extremely efficient in assigning local
deadlines to the active sub-jobs, it does not consider any
future sub-job when judging the schedulability of a sub-job
subset. That is, the sub-job set which is deemed schedulable
by ALDA at the current time may not actually be schedu-
lable after additional sub-jobs arrive at the processor. If a
processor considers the workload of some future sub-jobs
when assigning local deadlines, an infeasible sub-job subset
can be detected ahead of time, and a subset of sub-jobs can
be dropped as early as possible without wasting valuable
resources. To achieve this, we propose another derivative of
OLDA, WLDA, which leverages workload prediction during
local-deadline assignment to improve resource utilization and
avoid dropping jobs. In WLDA, a processor can estimate the
release times and local deadline upper bounds of future sub-
jobs and then apply OLDA directly to all the active sub-jobs
and predicted future sub-jobs on the processor.

In order to predict future sub-jobs, we define the next
release interval ∆r next(J j,h) and the next local deadline upper
bound difference ∆UB next(J j,h) of sub-job J j,h to be the
average release interval and the average difference between
local deadline upper bounds, respectively, of two consecutive
instances of subtask Tm,h. Figure 3 depicts the main steps in
WLDA. Ωw(Vx) contains all the active sub-jobs that have been
released but not finished and all the future sub-jobs that have

Calculate the time 

window W for the sub-

jobs in Ω
w
(Vx)

Update the release times 

and local deadline upper 

bounds for future 

instances of subtask Tm,h

Generate new future 

sub-jobs that are within 

W, and insert them to 

Ω
w
(Vx)

Apply OLDA to find a 

solution

Jj,h is the second 

or later instance of subtask Tm,h

to reach processor

Yes

No

Δr_next(Jj,h) and ΔUB_next(Jj,h) 

are estimated based on the 

history timing information

Fig. 3. WLDA flow to determine future release times and
upper bounds on the local deadlines of future sub-jobs
and assign local deadlines to the newly released sub-job
as well as the active and future sub-jobs in Ωw(Vx).

been considered by WLDA. The prediction time window W
is first calculated based on the current time and the active
sub-jobs on a local processor. If the newly arriving sub-job,
J j,h, is the second or a later instance of subtask Tm,h, the
next release interval (∆r next(J j,h)) and the next local deadline
upper bound difference (∆UB next(J j,h)) are estimated based
on past time data. Then, ∆r next(J j,h) and ∆UB next(J j,h) are
used to update release times and local deadline upper bounds
of future instances of Tm,h, respectively.

If J j,h is the first instance of a subtask to arrive at processor
Vx, the release times and local deadline upper bounds of future
instances of a subtask cannot be simply calculated unless
subtasks are periodic. In this case, WLDA does not predict
future sub-jobs for this subtask. For the newly constructed
sub-job set, OLDA is to assign local deadlines to the newly
released sub-job and the sub-jobs in Ωw(Vx). The details of
WLDA can be found in the supplemental material. The time
complexity of WLDA is O(|Ωw(Vx)|4), where |Ωw(Vx)| is the
number of active and future sub-jobs on Vx. Since processor Vx
calls WLDA every time a new sub-job from Ω(Vx) is released
at Vx, processor Vx takes O(|Ω(Vx)| · |Ωw(Vx)|4) time to solve
a set |Ω(Vx)| using WLDA.

Since WLDA considers some future sub-jobs, it may be able
to detect an unschedulable sub-job subset earlier and hence
drop sub-jobs earlier than ALDA. Doing so avoids wasteful
execution of sub-jobs whose successors would be dropped
later, and results in a possible decrease in the total number of
dropped sub-jobs. However, if ALDA cannot find a feasible
local-deadline assignment for a task set, neither can WLDA.
This observation is summarized in Lemma 8.

Lemma 8. If ALDA drops any sub-jobs due to an infeasible
deadline assignment, WLDA must also drop some sub-jobs.

6 DISCUSSIONS

In this section, we discuss two important issues applicable
to all versions of OLDA. Specifically, we present a commu-
nication mechanism to support timely release of a sub-job
whose predecessors, possibly on different processors, have
finished execution. In addition, we discuss the influence of
time overhead by OLDA on the performance of the DRTSs.
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6.1 Communication Mechanism

OLDA and its derivatives all rely on the following generic
communication scheme. A processor completing a sub-job
sends a message to downstream processors which are to
execute the immediate successors of the completed sub-job.
The message contains the identifier of the completed sub-job
and the identifier of the subtask that the completed sub-job
belongs to, which downstream processors utilize to release
new sub-jobs. In addition, the maximum allowed response
time of job comprising the completed sub-job is included in
the message, based on which downstream processors calculate
the upper bound on the local deadline of the newly released
sub-job and compute the necessary local deadlines. We define
the maximum allowed response time respi(t) of job Ji at time
t to be the difference between the relative end-to-end deadline
Dm of task Tm that Ji belongs to and the total delay that Ji
has experienced up to time t. Moreover, the message includes
the dropped job identifiers which have been recorded in the
local processor but never been told to downstream processors.
The downstream processors utilize such information to drop
sub-jobs for which other sub-jobs composing the same job
have been dropped in other processors. Notice that whenever
a sub-job is dropped, the job that this dropped sub-job belongs
to cannot meet its end-to-end deadline and all the sub-jobs
belonging to the job needs to be dropped. To support our pro-
posed algorithms, we can employ a low-cost communication
mechanism implemented in a bus-based network similar to
those discussed in [7], [11], [12], [29].

To reduce network traffic, we do not require global clock
synchronization when implementing our algorithms. The main
challenge lies in how to calculate the local deadline upper
bound of a newly released sub-job without requiring global
clock synchronization. For any newly released sub-job, its
execution time, release time and local deadline upper bound is
required in OLDA. The execution time and release time of a
sub-job are known locally. In contrast, the local deadline upper
bound of a sub-job is determined by the end-to-end deadline
of the corresponding job comprising the sub-job according
to (3), which may be different on different processors in
an asynchronous DRTS. Therefore, downstream processors
cannot directly use the end-to-end deadline value of a job
delivered from the local processor. We employ a distributed
method to calculate the local deadline upper bound of a
newly released sub-job, which leverages the relative end-to-
end deadline of a task. Below, we illustrate how to accomplish
this without requiring global clock synchronization.

Assume that sub-job Ji,k belonging to subtask Tm,k is as-
signed to processor Vy. To calculate UBi,k of Ji,k, processor Vy
needs to obtain the end-to-end deadline Di according to (3),
where Di can be calculated by using the following equation,

Di = ri,k + respi(ri,k). (11)

When all the immediate predecessors of Ji,k have finished
execution, Ji,k is immediately released. Therefore, respi(ri,k)
of Ji at time ri,k is calculated by

respi(ri,k) = min
∀Ji,h4Ji,k

{respi(di,h)}. (12)

Without loss of generality, suppose an immediate predecessor
Ji,h of Ji,k is finished on processor Vx at time di,h. Then,
processor Vx can obtain respi(di,h) by using equation

respi(di,h) = respi(ri,h)− (di,h − ri,h). (13)

If Ji,k is an input sub-job, the maximum allowed response time
respi(ri,k) of Ji is equal to the relative end-to-end deadline
Dm of task Tm. Therefore, to calculate UBi,k of Ji,k, a message
triggered by the completion of Ji,h at di,h is sent from Vx to Vy
to inform Vy about the completion of Ji,h. Then, processor Vy
reads ri,k directly and uses (3) to calculate the local deadline
upper bound UBi,k of Ji,k without global clock synchronization.

Furthermore, every time a processor drops a sub-job or
overhears that a sub-job has been dropped by other processors,
the local processor adds the drop information to a list of jobs
whose sub-jobs have been dropped. When a message is sent
from Vx to Vy to inform Vy about the completion of Ji,h, the
message will include the dropped jobs’ identifiers which have
been recorded in Vx’s list but never been told to Vy by Vx.
Similarly, when Vy receives a message that a sub-job finished
execution at processor Vx, Vy will send Vx an acknowledgement
message. The acknowledgement message includes the dropped
jobs’ identifiers that have been recorded in Vy’s list and have
never been told to Vx by Vy. The list of dropped jobs kept by
each processor is then updated and the corresponding sub-jobs
are dropped when they arrive at the local processor.

In all, the message transmitted upon the completion of a
sub-job contains a small amount of information, which can be
supported by the bus-based network platforms, e.g., Controller
Area Network (CAN). There exist some communication de-
lays due to message transmissions among processors. When
the on-line derivatives of OLDA, ALDA and WLDA, are
implemented in a DRTS, the communication delays between
the processors can increase the maximum allowed response
time of jobs on the downstream processors and reduce the
local deadline upper bounds of sub-jobs on the upstream
processors. If the communication delays along the downstream
paths of sub-jobs can be estimated, these delays can be readily
incorporated into the maximum allowed response time of
jobs and the local deadline upper bounds of sub-jobs during
runtime. Hence, though ALDA and WLDA cannot precisely
handle communication delays along the downstream paths,
they can indirectly account for such delays.

6.2 Influence of Time Overhead by OLDA
The time overhead associated with OLDA may cause some
sub-jobs to miss their local deadlines. There are two factors
that determine the effects of time overhead of OLDA on the
performance of the distributed system. The first factor is the
density level of a task Tn, i.e., Cn

Dn
. A job of a task with a high

density level has a higher probability of missing its end-to-end
deadline when it is delayed due to the execution of OLDA.
The second factor is the ratio of the time overhead over the
relative end-to-end deadline of task Tn, i.e., Overhead

Dn
. If the

relative end-to-end deadline of a job is not large enough to
accommodate the time overhead of OLDA, the job will violate
its end-to-end deadline. The time overhead is determined by
the time complexity of OLDA and the frequency of the call
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to OLDA. Since the time complexity of OLDA’s derivatives is
at least quadratic in the number of sub-jobs and OLDA needs
to be run each time a sub-job enters a local processor, our
algorithm is suitable for DRTSs where dozens of active sub-
jobs are to be executed, e.g., avionics and automotive control
applications. We discuss quantitatively the effect of the time
overhead of OLDA in Section 7.4.

7 EVALUATION
In this section, we analyze the performance and efficiency of
our proposed algorithms using generated task sets. We start by
evaluating ALDA with a specific sub-job dropping policy for
ALDA, and then compare ALDA against WLDA. Note that we
do not evaluate OLDA since it is not practical in real settings,
as explained in Section 5. To determine how our proposed
algorithms fare against existing techniques, we select one
derivative with a better performance out of ALDA and WLDA
and compare this derivative against JA and BBW for different
types of workloads. Notice that ALDA performs better than
WLDA for the ST workloads while WLDA performs better
than ALDA for the GT workloads. Below, we describe the
simulation setup and then discuss simulation results.
7.1 Simulation Setup
The distributed system consists of 8 processors. We use two
different types of workloads, the stream-type (ST) workloads
and the general-type (GT) workloads to emulate different kinds
of application scenarios. For the ST workloads, each task is
composed of a chain of subtasks. Such tasks can be found
in many signal processing and multimedia applications. In
contrast, the GT workloads are more general where (i) a sub-
job may have multiple successors and predecessors, and (ii)
there is no fixed execution order in the system.

The ST workloads consist of randomly generated task sets
in order to evaluate two different processor loading scenarios.
For the first set of workloads, the execution time of a job
is randomly distributed along its execution path. As a result,
processor loads tend to be balanced. As a stress test, the
second set of workload represents a somewhat imbalanced
workload distribution among the processors. The workloads
were generated in such a way that the first few subtasks
as well as the last few subtasks are more heavily loaded.
This set of workloads was designed to test the usefulness in
considering severe resource competition among different jobs
on a given processor in meeting end-to-end deadlines. (Note
that imbalanced workload scenarios may occur in real life if
an originally balanced design experiences processor failures
and the original workload must be redistributed.)

Both sets of the ST workloads contain 100 randomly
generated task sets of 50 tasks each for 10 different system
utilization levels (400%,425%, . . . ,625%), for a total of 1,000
task sets. Each task is composed of a chain of 4 to 6
subtasks. Each subtask is assigned to a processor such that
no two subtasks of the same task run on a common processor.
Task periods were randomly generated within the range of
from 100,000 to 1000,000 microseconds and the end-to-end
deadlines were set to their corresponding periods. We used the
UUnifast algorithm [4] to generate the total execution time of
each task since UUnifast provides better control on how to

TABLE 5
Selection of Sub-job Dropping Policies for Different

Types of Workloads by ALDA and WLDA.

Workload Type GT Balanced ST Imbalanced ST
ALDA MRET MRET MRET
WLDA MLET MLET MLET

assign execution times to subtasks than a random assignment.
After the call to the UUnifast algorithm, the set of processors
used by task Ti was randomly selected based on the actual
number of subtasks Mi for each task Ti and the execution time
of each subtask was determined. Each task set was generated
with the guarantee that the total utilization at each processor
is no larger than 1.

Similar to the ST workloads, the GT workloads also contain
1000 task sets, but each set only has between 25 and 100
subtasks. The GT workloads were generated using TGFF [10].
Task periods were generated using uniform distribution and
can take any value between [10,000,150,000] microseconds.
The end-to-end deadline of each job was set to be equal to the
release time of the job plus the period of the corresponding
task. The execution time of a subtask was randomly gener-
ated and was within [1,10,000] microseconds. After the task
set was generated, the execution time of each sub-job was
uniformly scaled down so that the total utilization of the task
set is equal to the desired utilization.

To ensure a fair comparison of the different algorithms
under consideration, we made some modifications to JA
and BBW. The original versions of JA and BBW require
global clock synchronization. We removed this requirement
by implementing JA and BBW on-line on each processor. We
implemented our proposed algorithms (ALDA and WLDA)
as well as two sub-job dropping policies. The first policy
(denoted as MLET, for Maximum Local Execution Time)
abandons a job with the largest execution time on the processor
first. The second policy (denoted as MRET, for Maximum
Remaining Execution Time) drops the job with the largest
remaining execution time on the processor first. The selection
of the sub-job dropping policies for different workloads by
ALDA and WLDA is summarized in Table 5. More details
on comparing two sub-job dropping policies and selecting
one of them are introduced in the supplemental material. All
algorithms were implemented in C++. Experimental data were
collected on a computer cluster, which is composed of 8 quad-
core 2.3 GHz AMD Opteron processors with Red Hat Linux
4.1.2-50. Each task set was simulated for the time interval
[0,100 · max period], where max period is the maximum
period among the periods of all the tasks in the task set.

We measure the performance of each algorithm with three
metrics. The first metric is the job drop rate, i.e., the ratio
between the number of jobs dropped and the number of jobs
released in the system. This metric measures the algorithm’s
dynamic behavior in a soft real-time system. The second
metric is the number of schedulable task sets. This metric
indicates each algorithm’s ability in finding feasible solutions
(i.e., static behavior). The third metric is the running time of
each algorithm (averaged on each processor) to solve a task
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TABLE 6
Comparison of ALDA and WLDA in terms of the Three

Metrics for Different Types of Workloads.

Job Drop Solved Set Running
Metrics Rate (%) Number Time (µs)

ALDA 1.70 844 4549292
GT WLDA 1.62 834 86812928

Balanced ALDA 0.0195 861 6604004
ST WLDA 0.0203 859 68431633

Imbalanced ALDA 0.0257 745 6924910
ST WLDA 0.0279 739 70330281

set. This metric shows the time overhead of each algorithm.

7.2 Comparing OLDA Derivatives

We now discuss the comparison results for our proposed
algorithms, ALDA and WLDA for the ST and GT workloads.
Since the performance of WLDA depends on some input
parameters (e.g., Max Allowed Drop Num and α), we set
these parameters to optimal values in order to fully exploit
the potential of WLDA. (Please refer to the supplemental
material for more information.) Table 6 shows the total job
drop rates, total solved task set numbers and total running
times of solving all the 1000 task sets by ALDA and WLDA
for different types of workloads. It is found that WLDA drops
5.21% fewer jobs (up to 9.09%) on average than ALDA for the
GT workloads. In contrast, WLDA drops 4.49% and 8.80%
more jobs (up to 7.54% and 120%) on average than ALDA
for the balanced and imbalanced ST workloads, respectively.
Our results show that ALDA can solve 2, 6 and 10, more
task sets (out of 1000 task sets) than WLDA for the balanced
ST workloads, imbalanced ST workloads and GT workloads,
respectively. WLDA requires 11, 11, and 19 times more
cycles on average than ALDA for the balanced ST workloads,
imbalanced ST workloads and GT workloads, respectively.
More details of comparing ALDA and WLDA are provided
in the supplemental material.

Ideally, WLDA can use its prediction mechanism to reduce
the number of dropped jobs. However, WLDA may drop
a schedulable job by mistake due to a mis-prediction of
future sub-jobs. Moreover, the time overhead caused by the
prediction mechanism can greatly degrade the performance of
WLDA. This time overhead is caused by several maintenance
operations (such as the update of the timing information of the
future sub-jobs already considered in the previous assignment,
the addition and removal of some new and obsolete future
sub-jobs, respectively, etc.) in the prediction mechanism. The
time overhead caused by the prediction mechanism in WLDA
makes some jobs not only miss their assigned local deadlines
but also violate their local deadline upper bounds. In summary,
our results indicate that ALDA performs better than WLDA
for the ST workloads while WLDA outperforms ALDA for the
GT workloads. The higher time overhead of WLDA makes it
unsuitable for ST workloads, as a sub-job Ji,k can delay the
execution of all its successors Ji,k′ ’s since a job is composed of
a chain of sub-jobs. In contrast, for the GT workloads, the time
overhead incurred due to scheduling will most likely not delay
the execution of all the other active sub-jobs Ji,k′ ’s in Ji since
some active sub-jobs in Ji are not successors of Ji,k. Therefore,

we focus on ALDA for the ST workloads and WLDA for the
GT workloads in the discussion below.

7.3 Performance of OLDA against Other Algorithms
We compare the performance of OLDA with JA and BBW,
the two representative priority assignment methods. We use
ALDA and WLDA to test the performance of OLDA in the
ST and GT workloads, respectively. More details on the sub-
job dropping policy is provided in the supplemental material.
In the first experiment, we compare the average job drop
rates of infeasible task sets when using different algorithms
for balanced ST workloads, imbalanced ST workloads and
GT workloads. A job is dropped either because no local-
deadline assignment can be found for the sub-job set on a
processor using OLDA or the job’s end-to-end deadline is
missed using BBW and JA. The job drop rates for the three
algorithms for the balanced ST workloads, imbalanced ST
workloads, and GT workloads are shown in Figures 4(a), 4(b),
and 4(c), respectively. It is clear that OLDA drops much fewer
jobs than the other two methods. Specifically, for balanced
ST workloads, BBW and JA drop 179% and 165% more
jobs on average than OLDA, respectively. For imbalanced ST
workloads, the averages are 61% and 313%, respectively. For
GT workloads, 160% and 51% more jobs are dropped by BBW
and JA than those by OLDA on average, respectively.

In the second experiment, we compare the percentage of
feasible task sets (over the 100 task sets at each utilization
level) found by our algorithm, with those found by JA and
BBW for the three sets of the workloads. The results are
summarized in Figures 4(d), 4(e) and 4(f), respectively. The
data shows that OLDA finds far more feasible sets than the
other two methods. Specifically, for balanced ST workloads,
using OLDA leads to 71% and 22% on average (and up
to 2,250% and 124%) more feasible task sets than using
BBW and JA, respectively. For imbalanced ST workloads,
using OLDA results in 60% and 48% on average (and up
to 338% and 2300%) more feasible task sets than BBW and
JA, respectively. For GT workloads, the number of solutions
found by OLDA is 13% and 12% on average (and up to 100%
and 200%) more than that found by BBW and JA. Observe
that OLDA performs much better than existing techniques
at high utilization levels where there are more jobs in the
system. We would also like to point out that sometimes OLDA
may not be able to find a feasible solution even though
such solutions indeed exist, since OLDA finds local sub-job
deadlines for each processor independently instead of using
a global approach. For balanced ST workloads, OLDA can
find on average 98.81% and 99.86% of those found by BBW
and JA, respectively. For imbalanced ST workloads, OLDA
can find on average 95.27% and 99.40% of the feasible task
sets found by BBW and JA, respectively. For GT workloads,
OLDA can find on average 99.86% and 99.60% of the feasible
task sets found by BBW and JA, respectively. These results
demonstrate that OLDA not only finds more feasible task sets
than BBW and JA, but also solves most of the problems that
BBW and JA can solve.

To see how well OLDA fares compared to an MILP solver,
we randomly selected 3 workloads containing 4, 20 and 26
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(a) Average drop rate for balanced workloads
(ST workloads).
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(b) Average drop rate for imbalanced workloads
(ST workloads).
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(c) Average drop rate for GT workloads.
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(d) Percentage of feasible task sets found for
balanced workloads (ST workloads).
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(e) Percentage of feasible task sets found for
imbalanced workloads (ST workloads).
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(f) Percentage of feasible task sets found for GT
workloads.
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(ST workloads).
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(h) Total running time for imbalanced workloads
(ST workloads).
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(i) Total running time for GT workloads.

Fig. 4. Comparison of OLDA, JA and BBW.

tasks, respectively, and compared the solutions obtained by
OLDA and lp solve [1], an MILP solver. For the workload
with 4 tasks, both OLDA and lp solve find the same solution.
For the workload with 20 tasks, OLDA and lp solve find two
different feasible solutions, however, the objective function
values by the two solutions are the same. For the workload
with 26 tasks, OLDA is able to solve the problem containing
10 sub-jobs within 6 ns while lp solve fails to find a solution
after running for 48 hours. The comparisons support our earlier
claim that OLDA always finds an optimal solution to the
problem stated in (5), (6) and (7) whenever a feasible solution
exists. Furthermore, the execution time of OLDA is more
suitable for on-line use than that of lp solve.

7.4 Time Overhead of OLDA

In our evaluations, we consider the time overhead due to
OLDA when simulating a task set. That is, every time OLDA
is called by a local processor, our simulator records the running
time of OLDA and postpones the execution of all the active
local sub-jobs for that time duration to simulate the influence
of the time overhead due to OLDA. To examine whether
OLDA is suitable for on-line local-deadline assignments, we
show the total running time overheads of OLDA, BBW and
JA for the balanced ST workloads, imbalanced ST workloads
and GT workloads in Figures 4(g), 4(h) and 4(i), respectively.
We still use ALDA and WLDA to test the performance of

OLDA in the ST and GT workloads, respectively. Based on
the results, we compare the number of cycles required by
OLDA against those of JA and BBW. For the balanced ST
workloads, OLDA requires on average 1.76 and 2.34 times
more cycles per task set (with 50 tasks) than BBW and JA,
respectively. For the imbalanced ST workloads, OLDA needs
about 1.81 and 2.43 times more cycles per task set than BBW
and JA, respectively. For the GT workloads, OLDA requires
on average 30 and 41 times more cycles per task set than BBW
and JA. Although OLDA has a longer running time than both
BBW and JA, the average numbers of cycles required to run
OLDA for once are about 292, 295 and 4507 cycles for the
balanced ST workloads, imbalanced ST workloads and GT
workloads, respectively, while the average number of the sub-
jobs handled by an activation of OLDA is 3, 3 and 8 for the
balanced ST workloads, imbalanced ST workloads and GT
workloads, respectively. Such runtime overhead is tolerable in
DRTSs executing computationally demanding real-time jobs,
e.g. in avionics and automotive control applications [15], [25],
where dozens of active sub-jobs are to be executed.

8 SUMMARY AND FUTURE WORK

This paper presented a novel distributed local-deadline as-
signment approach to guarantee job end-to-end deadlines in
a DRTS. Our algorithms have the following features: (i) they
are guaranteed to find a feasible deadline assignment on
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each processor locally if one exists, (ii) the local-deadline
assignment solution always minimizes the maximum slack
among all the local sub-jobs on the processor, and (iii) they
do not require global synchronization. Our algorithms have
been shown to be very effective and general in that they
support general tasks, each of which can be represented as
a DAG and partitioned to processors by any arbitrary method.
Furthermore, our algorithms are efficient enough for on-line
use, and thus can quickly adapt to dynamic changes in the
system. In order to further validate the advantages of our
algorithms, we plan to implement them in a real-time operating
system and apply them to some real-world applications. Our
algorithms can be improved by employing an appropriate
bus-based network platform, incorporating the communication
delays and applying different QoS criteria.
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