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Abstract

This paper introduces an optimization framework for the
elastic scheduling of periodic tasks. The paper rederives
the original elastic scheduling algorithm in [2] as the solu-
tion to an optimization problem that seeks to minimize the
squared deviation of a task’s utilization from initial desired
utilization. We apply this approach to develop an elastic
scheduling algorithm that seeks to minimize the average dif-
ference of task period from a desired minimum period sub-
ject to various inequality constraints.

1. Introduction

A desirable property of a real-time system is the guaran-
tee that it will perform at least beyond some pre-specified
thresholds defined by system designers. This is usually not
a concern under normal situations where analysis has previ-
ously been done offline to ensure performance of the system
based on its regular workload. However, in response to an
event such as user’s input or changing environment, the load
of the system may dynamically change in such a way that
a temporal overload condition occurs. The challenge, then,
is to provide some mechanisms to guarantee the minimum
performance level under such circumstances.

Many scheduling algorithms (e.g. [3]) have been pro-
posed that allow some jobs to be dropped to improve
schedulability. However, it is sometimes more suitable to
execute tasks less often instead of dropping them. For ex-
ample, limitations on the throughput capacity of ad hoc
communication networks [1] make it highly desirable to re-
duce overall network traffic by having control tasks adap-
tively adjust their periods in response to the actual activity
level of the control application. To address this type of re-
quirements, [2] proposed a more flexible framework known
as the elastic task model where deadline misses are avoided
by increasing tasks periods until some desirable utilization
level is achieved.

We will focus our attention on said elastic task model.
The framework is based on an elegant analogy between
spring systems and task scheduling in which a task’s re-
sistance to changing its period is viewed as a spring’s resis-
tance to being compressed. In accordance with the “princi-
ple of least action” found in classical mechanics, this sug-
gests that the elastic task model is really attempting to mini-
mize some overall measure of the task set’s “energy”, whose
precise nature was not made clear in the original work. This
paper re-examines that question and identifies the specific
measure of task set energy whose minimization leads to the
task compression algorithm [2]. We feel that identifying
such a cost function is important because it provides guid-
ance in the selection of weighting factors, such as elastic
coefficients from the elastic task model, and because it sug-
gests that it may be possible to generalize the original elas-
tic task framework in which elastic coefficients are chosen
to minimize other relevant measures of task set energy.

The remainder of the paper is organized as follows. In
Section 2, we present our approach to period selection. Sec-
tion 3 shows our experimental results and the paper con-
cludes with Section 4.

2 Formal Approach to Period Selection

Given a particular set of real-time tasks, there may exist
numerous sets of periods for the tasks to be schedulable.
It is not difficult to see that different sets of periods would
lead to different performance of the resultant system. In
general, the period selection problem can be thought of as
an optimization problem. That is,

optimize: performance metric
subject to: tasks are schedulable

bounds on periods are satisfied

Below we introduce two specific performance metrics
and discuss their implications. We assume that tasks are



scheduled according to the EDF scheduling policy and task
deadlines equal to task periods.

2.1 Minimize utilization perturbation

Processor utilization by each task is an important mea-
sure for any real-time system. It not only reveals the amount
of system resource dedicated to the task but also impacts
schedulability. In the elastic task model, one consequence
of changing task periods is changing the utilization of tasks.
From the stand point of performance preservation, it is de-
sirable to minimize the changes in task utilization. This ob-
jective can be captured by the following constrained opti-
mization problem.

minimize: E(U1, · · · , UN ) =

N∑

i=1

wi (Ui0 − Ui)
2(1)

subject to:
N∑

i=1

Ui ≤ Ud (2)

Ui ≥ Ui min for i = 1, 2, · · · , N (3)

In the formulation, N is the number of tasks in the sys-
tem, Ui0 is the initial utilization of task τi and Ui0 ≥ Ui min,
Ui is the new utilization of τi to be determined, and Ud is
the desired total utilization. (Ud is usually set to 1 for EDF
scheduling.) Constant wi (≥ 0) is a weighting factor and
reflects the criticality of a task. More critical tasks would
have larger wi’s. Thus, wi can be considered as the value of
task τi. The first constraint simply states the schedulability
condition under EDF. The rest of the constraints bound the
utilization, equivalently bound the task periods by Timax

where Ui min = Ci/Timax.
The above constrained optimization problem belongs to

the category of quadratic programs and can be solved in
polynomial time. However, solving such a problem during
runtime can be too costly. What makes the above formu-
lation attractive is that the solution to the above problem is
exactly the same as that found by the task compression al-
gorithm presented in [2]. We introduce several lemmas and
a theorem to support this argument. Due to the page limit,
we omit some of the proofs.

Lemma 1 Given the constrained optimization problem as
specified in (1)-(3), any solution, U ∗

i , to the problem must
satisfy

∑N

i=1
U∗

i = Ud.

Proof: This is proven through a straightforward application
of the Kuhn-Tucker necessary conditions. 2

Lemma 2 Given the constrained optimization problem as
specified in (1)-(3), any solution, U ∗

i , to the problem must

satisfy

U∗
i = Ui0−

1

wi

(∑
U∗

j
6=Ujmin

Ui0 − Ud +
∑

U∗

j
=Ujmin

Uj

)

∑
U∗

j
6=Ujmin

(1/wj)

(4)
if U∗

i > Uimin, and U∗
i = Uimin otherwise.

Proof: According to the Kuhn-Tucker conditions, the nec-
essary conditions for the existence of a relative minimum at
U∗

i are

0 =
∂Ja

∂U∗
i

= −2wi (Ui0 − U∗
i ) + µ0 − µi, (5)

i = 1, · · · , N

0 = µ0

(
Ud −

N∑

i=1

U∗
i

)
(6)

0 = µi (Uimin − U∗
i ) i = 1, · · · , N (7)

where µi’s are Lagrange multipliers and µi ≥ 0 for i =
0, · · · , N . From Lemma 1, we know that any solution to the
given problem must satisfy (6), i.e.,

Ud =

N∑

i=1

U∗
i . (8)

Furthermore, some other constraints in (7) may also be ac-
tive. Suppose the k-th constraint in (7) is active, we have
U∗

i = Uimin. Then, from

µk = µ0 − 2wi (Uk0 − Ukmin) (9)

We can then solve for µ0 by summing up Equation (5) for
all i and obtain

µ0 =
2
(∑

U∗

i
6=Uimin

Ui0 − Ud +
∑

U∗

i
=Uimin

Uimin

)

∑
U∗

i
6=Uimin

(1/wi)

If
∑

U∗

i
6=Uimin

Ui0 +
∑

U∗

i
=Uimin

Uimin > Ud, it is easy to
verify that µ0 > 0 and µk ≥ 0. Therefore, U∗

i is a solution
to the optimization problem. 2

Readers can readily verify that the periods obtained by
the algorithm in [2] satisfies the necessary conditions given
in Lemma 1 and 2. However, there may be more than one
solution that satisfies the conditions in Lemma 1 and 2. To
determine a globally optimal solution, a brute force method
is to examine all combinations of U ∗

i that satisfy the neces-
sary conditions. What needs to be shown is that the periods
found by the elastic algorithm in [2] indeed minimizes the
objective function in (1). The following lemma is indis-
pensable in arriving at the above conclusion.



Lemma 3 Given the constrained optimization problem as
specified in (1)-(3), let

∑N

i=1
U ′

i = Ud and

U ′′
i = Ui0 −

1

wi

(∑
U ′

j
6=Ujmin

Ui0 − Ud +
∑

U ′

j
=Ujmin

Ujmin

)

∑
U ′

j
6=Ujmin

(1/wj)

If U ′′
k < Ukmin for some 1 ≤ k ≤ N , then

E(U1, . . . , Uk, . . . , UN ) ≤ E(Û1, . . . , Ûk, . . . , ÛN )

where U i and Û i both satisfy the necessary conditions in
Lemma 1 and 2, and Uk = Ukmin and Ûk > Ukmin.

Based on the above lemma and setting wi = 1/ei (where
ei is the elastic coefficient used in [2]), the following theo-
rem can be readily proved.

Theorem 1 Consider a task set of N tasks where Ui is the
utilization of the ith task. Let Ui0 denote the initial desired
utilization of task τi and let ei > 0 be a set of elastic coeffi-
cients for i = 1, . . . , N . Let U0 =

∑N

i=1
Ui0. Task utiliza-

tion Ui obtained from the task compression algorithm in [2]
minimizes

E(U1, . . . , UN) =
N∑

i=1

1

ei

(Ui0 − Ui)
2

subject to the inequality constraints
∑N

i=1
Ui ≤ U0 and

Ui ≥ Uimin (i = 1, . . . , N ).

The above theorem has two significant consequences.
First, it reveals the optimization criterion inherent in the task
compression algorithm. Secondly, it illustrates that the task
compression algorithm (with a time complexity of O(n)))
can be used to solve certain convex programming problems.

2.2 Minimize task periods

For some applications, instead of focusing on utilization,
it may be more important to examine task periods directly.
For example, in a control application, task periods reflect
the sampling periods of certain control tasks. The perfor-
mance of a control system is very much dependent on the
sample periods used. When dynamic overload occurs and
some task periods must be adjusted to ensure schedulabil-
ity, it can be more desirable to satisfy schedulability while
minimizing task periods.

If the range of possible period values for each task is un-
bounded, the following constrained optimization problem
can be used to minimize the changes in task periods.

minimize: J(T1, · · · , TN) =

N∑

i=1

wi(Ti − Ti0)(10)

subject to:
N∑

i=1

Ci

Ti

≤ 1 (11)

In the formulation, N is the number of tasks in the sys-
tem, Ci is the execution time of task τi, Ti0 is its initial pe-
riod, and Ti is its new period to be determined. As before,
wi ≥ 0 is a weighting factor that reflects the criticality of
a task. The constraint in equation (11) is simply the usual
condition assuring the task set is schedulable under EDF.
(Other utilization bounds can be readily used in (11).) Let
T ∗

i denote a locally optimal set of task periods for the above
optimization problem. The following theorem provides a
closed-form characterization of this minimizer.

Theorem 2 Given the constrained optimization problem
specified in equations (10)–(11), a locally optimal solution
is

T ∗
i =

√
Ci

wi

N∑

k=1

√
wkCk (12)

Proof: This theorem is proved through a straightforward
application of the Kuhn-Tucker necessary conditions. 2

Remark: If we require that Ti ≥ Timin
(in other words a

lower bound on the desired period), then the above equation
becomes a set of inequality constraints, i.e.,

√
wiTimin

≤
√

Ci

N∑

k=1

√
wk

√
Ck

which can be used to identify a set of admissible weighting
factors whose selection ensures Ti ≥ Timin

.

3. Experimental Results

This section uses an example to illustrate the application
of our flexible scheduling framework. The results in this
paper will verify the equivalence of the flexible scheduling
algorithm in [2] and the optimal solution given in theorem 1.
This section’s results will also evaluate the performance of
flexible scheduling as specified in theorem 2 in which we try
to minimize average perturbations in task period. We reused
the first task set provided in the experimental results section
of [2], which is reproduced below in Table 1. The task com-
pression algorithm was written in C++, while the results ob-
tained from the constrained optimization problems and the
closed-form expressions were obtained from MatLab.

Table 1. Task set parameters used

Task Ci Ti0 Timin
Timax

ei

τ1 24 100 30 500 1
τ2 24 100 30 500 1
τ3 24 100 30 500 1.5
τ4 24 100 30 500 2

In this experiment, all tasks start at time 0 with an initial
period of 100 time units. The required minimum utilization



of the overall system is 24

500
+ 24

500
+ 24

500
+ 24

500
= 0.192. Since

the current utilization is 24

100
+ 24

100
+ 24

100
+ 24

100
= 0.96, the

task set is schedulable under EDF. When, at time 10000,
τ1 wants to change its period to 33 time units, it is al-
lowed to do so since the new required minimum utilization
of the system is 24

33
+ 24

500
+ 24

500
+ 24

500
= 0.871, which

is less than 1. However, since the EDF scheduling algo-
rithm is assumed, τ2, τ3, and τ4 can no longer execute with
their initial period, as the current utilization of the system is
24

33
+ 24

100
+ 24

100
+ 24

100
= 1.45. In other words, the period

of tasks τ2, τ3, and τ4 must increase for the system to re-
main schedulable. Figures 1 shows the resulting period of
τ2 when applying the task compression algorithm, the con-
strained optimization problem on minimum utilization per-
turbation, as well as the constrained optimization problems
on minimum unbounded period and upper bounded period,
along with their respective closed-form expressions. Note
that only the results for τ2 are shown due to space limit.
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Figure 1. Optimal periods for τ2

Figures 1 shows how τ2 changes its period based on the
different mechanisms used. The number of executed in-
stances is plotted as a function of time unit. It can easily be
seen from the graph that the task compression algorithm [2]
and the optimal solution from theorem 1 are the same. The
constrained optimization problem on minimum unbounded
period and its corresponding closed-form expression seem
to be equivalent (in the figure, the result of the constrained
optimization problem is denoted by “opt” and that of the
closed-form expression by “exp”). In addition, it is worth
noting that the value given by each constrained optimization
problem is different from the others. However, T2 is opti-
mal in each case with respect to the corresponding objective
function, as well as constraints.

It should be clear by now that the results from the con-
strained optimization problems are not comparable to each
other and that there is no “best” result for all situations.

System designers must make the decision of selecting the
most useful objective function given a specific system and
its constraints.

4. Conclusion and Future Work

As some important questions–such as how one can sys-
tematically select weighting factors (e.g. elastic coeffi-
cients) or what performance metric the task compression
algorithm seeks to minimize–were left unanswered when
the elastic task model was introduce, we attempted to ad-
dress these questions by creating a more general framework
where the task compression algorithm can be treated as a
special case. This paper represents an effort to view trade-
offs as optimization problems with possibly infinite perfor-
mance criterion. Once system designers select an appropri-
ate goal for their systems, they can readily use this frame-
work to find a corresponding set of optimal values. Properly
formulating a problem can make it easier to find an efficient
algorithm or expression that will optimize a specific per-
formance measure. Ultimately, our framework allows for
flexible task scheduling where an agreement between con-
trol system designers and real-time system designers can be
reached.

As future work, we plan on exploring different objective
functions, such as those that involve the frequency or uti-
lization of a task, using different types of cost functions in
which some may not necessarily result in closed-form ex-
pressions.

Since the case for aperiodic tasks may impose different
constraints, such as response time, it is also worth investi-
gating. Lastly, this framework can also be used to treat cases
where the task deadline is less than its period or where the
task computation time is variable.
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