
1

An On-Line Framework for Improving Reliability of
Real-Time Systems on “Big-Little” Type MPSoCs

Yue Ma1, Thidapat Chantem2, Robert P. Dick3, Shige Wang4, and X. Sharon Hu1

1Department of CSE, University of Notre Dame, Notre Dame, IN 46656, USA, {yma1,shu}@nd.edu
2Department of ECE, Virginia Polytechnic Institute and State University, Arlington, VA, 22203, tchantem@vt.edu

3Department of EECS, University of Michigan, Ann Arbor, MI 48109, dickrp@umich.edu
4General Motors R&D, Warren, MI, 48090, shige.wang@gm.com

Abstract—Heterogeneous MPSoCs consisting of cores with
different performance/power behaviors are widely used in many
power-constrained real-time systems. Both soft-error reliability
and lifetime reliability are key concerns in such systems. Although
existing work have investigated related problems, they either focus
on one of the two reliability concerns or propose complicated
scheduling algorithms that cannot adequately address run-time
workload and environment variations. This paper introduces an
on-line heuristic to maximize soft-error reliability while satisfying
a lifetime reliability constraint for soft real-time systems executed
on MPSoCs composed of high-performance cores and low-power
cores. Based on the run-time cores’ frequencies and utilizations,
the heuristic performs workload migration between the high-
performance cores and low-power cores to achieve improved
soft-error reliability. Experimental results from both a hardware
platform and a simulator show that the proposed algorithm
reduces the probability of faults by at least 30% compared to
a number of representative existing approaches while satisfying
the same lifetime reliability constraints.

Keywords—Soft-error reliability; Lifetime reliability; Heteroge-
neous MPSoC; Real-time embedded system.

I. INTRODUCTION

To address power/energy concerns, various heterogeneous
multiprocessor systems on a chip (MPSoCs) have been intro-
duced [1]. A popular MPSoC architecture that is often used
in power/energy-conscious real-time embedded applications
is composed of pairs of high-performance (HP) cores and
low-power (LP) cores. Following the terminology introduced
by ARM [2], we refer to this as “big-little” architecture.
Nvidia’s variable symmetric multiprocessing (vSMP) also falls
into this category [3]. Such HP–LP core pairs present unique
performance, power/energy, and reliability tradeoffs, which are
investigated in this paper.

Since many real-time embedded systems that use MPSoCs
are deployed in critical applications and are expensive as well
as inconvenient to replace, life-time reliability (LTR) due to
permanent faults1 as well as soft-error reliability (SER) due to
transient faults are important design considerations. Decreasing
device dimensions and increasing transistor counts generally
decrease SER and LTR. Techniques for reducing power, energy
and/or temperature also impact the two reliability metrics in

1Intermittent faults are unlikely to be strongly dependent on power con-
sumption and therefore are out of the scope of this work.

different ways. Run-time workload variations further compli-
cate the problem of improving the overall system reliability.

This paper systematically addresses reliability concerns for
real-time systems running on big-little type MPSoCs. Since
transient faults occur much more frequently than permanent
faults [4], we focus on increasing SER without sacrificing
LTR. Specifically, we solve the following problem: maxi-
mize SER while satisfying real-time requirements, an upper
bound on LTR, and other constraints including energy and
temperature. Such problems can be found in many real world
applications such as mobile devices and in-vehicle infotain-
ment systems [5]. We are particularly interested in developing
an on-line framework to address unavoidable workload and
environment variations.

Most existing work either targets SER [6]–[8] or LTR [9]–
[13]. A few recent papers have examined both SER and
LTR together [14]–[17]. Both Chou et al. [14] and Huang
et al. [15] proposed a fault-aware technique to recover from
faults. Although transient and permanent faults are considered,
these efforts do not focus on increasing SER and LTR. The
work by Das et al. aimed to jointly improve SER and LTR by
mapping tasks to all cores and scaling core frequencies [16].
However, their solution is too computationally intensive to use
online. Zhou et al. proposed a technique to maximize system
availability by allocating replicated tasks and determining the
core frequency statically [17]. This off-line approach cannot
capture run-time variations.

We introduce an on-line framework, referred to as DRIF
(for Dynamic Reliability Improvement Framework) to solve
the problem identified above. Core frequencies are dynamically
scaled to increase SER. By exploiting the power and perfor-
mance features of the big-little type MPSoCs, we dynamically
activate the most power efficient core in each HP–LP core pair
to reduce power and temperature.

Our paper makes three main contributions. (i) By performing
experiments on a real hardware platform, we experimentally
establish suitable migration points for moving tasks between
HP and LP cores based on power and performance features. (ii)
We propose a computationally efficient method to determine
whether a given temporal thermal profile would result in the
corresponding LTR to be larger than a threshold. (iii) We
develop an on-line framework to maximize SER under real-
time, thermal, power, and LTR constraints by scaling cores’
frequencies and selecting the most power efficient cores to



2

execute tasks.
We have implemented and validated our algorithm both

on a simulator and on a hardware board (Nvidia’s Jetson
TK1 [18]). Based on the results obtained from running the
MiBench benchmark suite [19], our algorithm decreases SER
as measured by the probability of transient faults by at least
30% when compared with existing work.

II. BIG-LITTLE MPSOC AND CORE POWER FEATURES

In this section, we describe the big-little type MPSoCs, ex-
ploit the power features, and establish a guideline for suitable
migration points for migrating tasks to cores.

The big-little type MPSoCs are composed of multiple HP
cores and LP cores. In a typical big-little MPSoC, a HP
core and LP core are configured in a pair, but are activated
exclusively2. Given the fact that all pairs are identical and
work independently, we assume all pairs have the same power
features and analyze the power features of one pair3.

Whereas the primary goal of big-little type of MPSoCs is to
reduce power consumption by executing a light workload on
the LP cores, a LP core may sometimes consume more power
than a HP core when the cores are running the same workload
at the same high frequency settings [18]. Considering the diffi-
culties in direct measurement of a core’s power consumption,
one may use the steady-state temperatures without external
heatsink as an indirect method to measure power consump-
tion. When using steady-state temperature to measure power
consumption, measurements must be performed with the same
ambient temperature and heat transfer conditions. A higher
steady-state temperature indicates higher power consumption.
Although our measurements were taken on the Nvidia TK1
board, the methodology is applicable to HP and LP cores in
other MPSoCs as well.

Fig. 1 shows the measured temperatures representing the
power of Nvidia’s TK1 board [18]. As shown, the LP core
reaches a higher steady-state temperature under a heavy work-
load and a high frequency due to the high dynamic power. Due
to the small variations in ambient temperature, chip operating
voltage and current, the power consumption may vary, leading
to the variations in the measured temperature. As such, it is
not sufficient to conclude that a HP core consumes less power
when its temperature is lower than that of a LP core by a small
amount. We treat two temperatures are same if their difference
is smaller than 0.5 ◦C, which is the resolution of our thermal
sensors. We only register power savings when the temperature
of the LP core exceeds that of the HP core by this threshold.

Based on our measurements, we can determine a set of
workload migration points when the workload should be
moved to a core different to balance the power consumption
and the performance. As an example, Table I presents the
migration points for Nvidia TK1 board derived from our
measurements. It shows the cores that the workload should
be running on given the core frequency and utilization. In

2HP and LP cores can run simultaneously with the ARM global task
scheduling, but this is not widely supported by all MPSoCs.

3For the Nvidia vSMP with four HP cores and only one LP core, we
consider a light workload that can run on a single core.

40
41
42
43
44
45
46

100 85 70 55 40

Te
m

pe
ra

tu
re

 (C
el

si
us

)

Utilization (%)

1.092 GHz

HP Core LP Core

41.5

42.0

42.5

43.0

43.5

44.0

100 85 70 55 40

Te
m

pe
ra

tu
re

 (C
el

si
us

)

Utilization (%)

0.96 GHz

HP Core LP Core

40.0

40.5

41.0

41.5

42.0

42.5

100 85 70 55 40

Te
m

pe
ra

tu
re

 (C
el

si
us

)

Utilization (%)

0.828 GHz

HP Core LP Core

40.0

40.5

41.0

41.5

42.0

100 85 70 55 40

Te
m

pe
ra

tu
re

 (C
el

si
us

)

Utilization (%)

0.696 GHz

HP Core LP Core

39.0

39.5

40.0

40.5

41.0

41.5

100 85 70 55 40

Te
m

pe
ra

tu
re

 (C
el

si
us

)

Utilization (%)

0.564 GHz

HP Core LP Core

Fig. 1. The steady-state temperature of a HP core and a LP core under
different utilization and frequency levels, while other cores are powered off.

this table, “HP” and “LP” indicate the workload should be
migrating to a HP or LP core, and “-” indicates the workload
should remain on its current core.

While migrating workload between a HP core and a LP
core can reduce MPSoC power consumption, the migration
introduces additional cost in time and power. In this paper,
the power cost of a migration is negligible compared with
the power consumed to execute the workload. The time cost
for a migration varies from application to application. Our
measurements of running the applications from Mibench [19]
on Nvidia TK1 board, as shown in Table II, indicate the time
cost can be significant and differ from the 2 ms upper bound for
powering on the core and stabilizing the voltage rails [3]. This
suggests that a system developer should obtain the migration
time cost of a target application during design and allow the
migration only when the cost does not lead to violation of the
real-time constraints.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe the LTR model and propose
a computationally efficient method to check whether adopting
a thermal profile may cause the system to violate its LTR
constraint. Then, we describe other models and formally
describe the problem to be solved in this paper.

A. Lifetime reliability
Lifetime reliability, which is typically measured by the

mean-time-to-failure (MTTF), is dependent on multiple wear-
out effects [12]. For the sake of simplicity, we consider elec-
tromigration (EM) as the primary source of permanent faults in

TABLE I. GUIDELINES FOR ALLOCATING WORKLOADS

Util. 1.092 GHz 0.960 GHz 0.828 GHz 0.696 GHz 0.564 GHz
100% HP HP - - -
85% HP - - - LP
70% HP - - - LP
55% HP - - - LP
40% HP - - - LP

TABLE II. MEASURED TIMING OVERHEAD OF MIGRATION

bitcount dijkstra jpeg sha stringsearch
8.13 ms 6.24 ms 3.40 ms 1.13 ms 0.14 ms



3

this paper. Other device fault mechanisms can be incorporated
using the sum-of-fault rate model [11], [16]. Based on the
thermal profile of each hyper-period, the established MTTF is

MTTF = ∆hp×
∞∑
i=0

e−(i×A)β , (1)

where A depends on the hardware and the thermal profile in
the hyper-period, and its computation is provided [10]. ∆hp
is the length of the hyper-period.

In order to check whether a given thermal profile can cause a
system’s LTR constraint, MTTFth, to be violated, one method
is to calculate the MTTF by using Eq. (1) [17]. However,
two variables, A and ∆hp, depend on the thermal profile, and
are the main sources of complex computation. We tackle this
challenge by deriving a new formula that is dependent on only
one variable.

We introduce a concept called super hyper-period, shp,
which is a set of multiple adjacent hyper-periods. Since
MTTFth >> ∆hp, it is safe to assume that MTTFth is
evenly divided by ∆hp [10]. Also, we can find a super hyper-
period whose length is constant, smaller than MTTFth, and
evenly divided by any possible lengths of the hyper-period. If
the length of this super hyper-period is ∆shp, for any lengths
of the hyper-period, there must be a corresponding k that
∆shp = ∆hp× k.

By using super hyper-period, the LTR can be expressed as

MTTF = ∆shp×
∞∑
i=0

e−(i×A?)β , (2)

where A? depends on the hardware and the thermal profile in
the super hyper-period. We prove that A? = A × k, but omit
the details due to page limit. Hence, if ∆shp×m = MTTFth,
the formula to check the MTTF is

∞∑
i=0

e−(i×A?)β > m. (3)

In Eq. (3), only the variable A? depends on the thermal profile.
We propose using Eq. (3) as part of a two-phase process

to check whether a thermal profile may allow the system to
meet its LTR constraint. During the design phase, we arbitrary
determine the ∆shp. Since ∆hp is usually in seconds, setting
∆shp to years can satisfy that ∆shp is evenly divided by any
possible ∆hp. Then, we calculate m = MTTFth

∆shp and find a
threshold A?th. If the A? of a thermal profile is smaller than
A?th, the corresponding MTTF is larger than MTTFth. During
the run-time phase, for a given thermal profile in the hyper-
period, we calculate A to yield A? as A? = k × A, k =
∆shp
∆hp . Although the calculation performed during the design

phase is complicated, it only needs to be carried out once and
allows for a more-efficient online computation. In fact, the
overhead of our method in the run-time phase only depends
on the length of the hyper-period, which is relatively small,
making our approach suitable for online use.

B. Soft-error reliability
In this paper, we aim to maximize reliability in the presence

of transient faults caused by soft errors. The soft-error relia-

bility of a single core in a time interval is the probability that
no faults result from soft errors during that time interval,

r = e−λ(f)×u×∆t. (4)

λ(f) is the average fault rate which highly depends on the
core frequency (f ). ∆t is the time interval and u is the core’s
utilization. If a hyper-period has p time intervals and a system
has n HP-LP core pairs, the SER at a hyper-period is

R =

p∏
i=0

n∏
j=0

r(i, Cj), (5)

where r(i, Cj) is the SER of the jth core pair in the ith time
interval. The aim of this paper is to maximize the average SER
among hyper-periods under the LTR constraint.

C. Hardware and workload model

Based on the discussion in Section II, we focus on big-little
type MPSoCs. We assume the system has n HP cores and n
LP cores. We pair one HP core with a LP core, and inside
each pair, the HP core and the LP core work exclusively. We
also assume that for each pair, the HP core and the LP core
can work at the same frequency [18], but they have different
dynamic and leakage power consumptions.

In this paper, we consider independent periodic tasks with
soft deadlines. A task that misses deadline is immediately
terminated. We adopt a hybrid approach for mapping tasks to
cores. Specifically, at design time, tasks are allocated to each
HP–LP core pair (similar to partitioned scheduling [20]), and
during run time tasks can be migrated within a HP–LP pair.
Migration between different pairs is not allowed. This hybrid
approach can adapt to dynamic run-time variations and has
been used in different areas [6], [13].

D. Problem formulation

We formulate our problem motivated by applications like
mobile and in-vehicle infotainment systems. Infotainment sys-
tems have soft real-time, power, LTR, and SER constraints,
and are typically run on operating systems [5]. The overhead
of the operating system cannot be ignored and it may change
at run time.

Before formulating the problem, we first introduce a concept
called sampling window (W ). A sampling window is defined
as a time interval in which the temperature of each sampling
window is constant, and migration is not allowed inside a
sampling window. At the ith sampling window, for the jth

HP–LP core pair, the HP core (c(Wi, Cj) = “HP”) or the LP
core (c(Wi, Cj) = “LP”) executing tasks and the frequency
is f(Wi, Cj). If a hyper-period is composed by p sampling
windows and the system has n HP–LP core pairs, the problem
is to maximize the SER,

maxR =

p∏
i=0

n∏
j=0

r(Wi, Cj), (6)

where r(Wi, Cj) is the SER of the jth pair in the ith sampling
window. For each HP–LP core pair (represented by the jth



4

State Collector (SC)

Schedule Generator (SG) Schedule Executor(SE)

active core, temperature, utilization, frequency

schedule

frequency, active core

n HP cores + n LP cores

DRIF

temperature

at each sampling window
at each hyper-period

active core
temperature 
utilization, frequency

Fig. 2. High-level overview of DRIF.

pair), the solution to Eq. (6) must satisfy the following
u(Wi, Cj) = uos(Wi, Cj) + uτ (Wi, Cj) ≤ umax, (7)
p(Wi, Cj) ≤ pbudget, (8)
MTTF (TPj) > MTTFth, (9)
max{T (Wi, Cj)} ≤ Tth. (10)

The first constraint captures the real-time requirement, where
uτ (Wi, Cj) and uos(Wi, Cj) are the utilization of applications
and the operating system, respectively. umax is the upper
bound on utilization to satisfy schedulability. The second
constraint is introduced to ensure the average power consump-
tion at each sampling window, p(Wi, Cj), is lower than the
power budget, pbudget. The third constraint requires the MTTF
resulting from the thermal profile, TPj , to be larger than a
threshold. The last constraint requires the temperature at each
sampling window, T (Wi, Cj), to be less than a threshold,
Tth. For soft real-time systems like infotainment systems,
temporarily violating the first three constraints is acceptable,
but the last constraint must be satisfied to avoid timing faults
resulting from overheating.
R, u(Wi, Cj), p(Wi, Cj), T (Wi, Cj), and TPj are functions

of the core frequencies and activities. The solution to this
problem, called schedule, indicates the active core c(Wi, Cj)
and the frequency f(Wi, Cj) for each HP–LP core pair in each
sampling window. We design an on-line framework to find the
solution.

IV. RELIABILITY IMPROVEMENT FRAMEWORK

In this section, we propose a dynamic reliability improve-
ment framework (DRIF) to improve the SER under the real-
time, thermal, power, and LTR constraints.

A. Overview
As stated earlier in the paper, to better respond to workload

and environment changes that are unavoidable in real-time
embedded systems, we aim to develop an on-line approach to
solve the problem defined in Eq. (6)-(10). The basic idea of our
framework, DRIF, is to incrementally solve the optimization
problem by using the history of task execution times and OS
utilizations in the previous hyper-period. Note our method
can be easily applied to any arbitrary history window size.
DRIF consists of three main components: a schedule generator
(SG), which is triggered at beginning of each hyper-period, a
schedule executor (SE), which is triggered at the beginning
of each sampling window, and a state collector (SC), which
collects the system states in each sampling window. (See

Fig. 2.) The system states include the temperature, utilization,
frequency, and active core of each HP–LP core pair.
DRIF works as follows. In each sampling window, the SC

collects and saves the system states. At the end of each hyper-
period, the system state of this hyper-period is sent to the SG.
The SG then generates a new schedule (referred to as starting
schedule), which specifies the active core(s) and frequency of
each active core for each sampling window in the next hyper-
period, based on the available state information. The starting
schedule is the solution of the problem in Eq. (6)-(10). In each
sampling window, the SE either adopts the starting schedule or
generates a modified version of the starting schedule to adapt
to run-time variations.

Though the general idea of DRIF is relatively intuitive,
there are a couple of challenges that we need to overcome:
(i) since the history (i.e., tasks’ execution times) does not
always reflect the future, it is possible for the constraints to
be violated, and (ii) a highly efficiently algorithm is needed
to avoid excessive overhead. We elaborate on our methods of
solving these problems in the rest of this section.

B. Schedule generator
We present the details of the schedule generator, SG, in this

subsection. The goal of the SG is to generate a schedule for the
next hyper-period based on the state information in the current
hyper-period. Though it is possible to use an optimization
solver to generate an optimal schedule based on Eq. (6)–
(10), it would be quite time consuming. Instead, we design
a simple heuristic which effectively uses the migration policy
presented in Sec. II as well as the efficient LTR estimation
method introduced in Sec. III-A.

The main procedure of SG is given in Alg. 1. The inputs are
the system state Statek and system schedule Schedk in the
kth hyper-period. Both the Statek and the Schedk are a set of
the state and schedule of each HP–LP core pair. Let Statek,j
denote the state of the jth pair, which includes the utilization
(Uk,j), core frequency (Fk,j), power (Pk,j), active core (Ck,j),
and thermal profile (TPk,j). Schedk,j denotes the active core
and core frequency in each sampling window of the jth pair.

The idea behind the SG is that for each HP–LP core pair
(represented by the jth HP-LP core pair), if the state Statek,j
can satisfy all of the constraints, try to increase core frequency
in Schedk,j to generate a new schedule for the (k + 1)th

hyper-period (Lines 4–9), otherwise, adjust Schedk,j to satisfy
the constraints (Lines 11–13). Given a Statek,j , the function
check indicates which constraints are not satisfied, e.g., {(7)}
represents the first constraint (in Eq. (7)) being violated. The
overhead of checking the LTR constraint by using the proposed
method in Sec. III-A is low. Since each HP–LP core pair works
independently and task migration among pairs is not allowed,
the system schedule Schedk for all pairs is a combination of
the schedules of each pair.

If the jth pair’s schedule, Schedk,j , can satisfy constraints,
we try to increase the core frequency iteratively (Lines 4–9). In
one iteration, the minimum frequency is increased to the next
level (Line 5). Then, the active core is determined based on
this new frequency, utilization, timing overhead of migration
and Table I (Line 6). After that, the Statek,j is updated based



5

Algorithm 1 Schedule Generation
1: procedure SG(Statek, Schedk)
2: for each HP–LP core (represented by the jth) pair do
3: if check(Statek,j) = Empty then
4: while check(Statek,j) = Empty do
5: f(Wh, Cj) = min∀Wi{f(Wi, Cj)}
6: increase f(Wh, Cj) to the next level
7: c(Wh, Cj)← core(f(Wh, Cj), u(Wh, Cj))
8: Statek,j ← update(f(Wh, Cj), c(Wh, Cj))
9: end while

10: reduce f(Wh, Cj) to the previous level
11: else
12: while check(Statek,j) 6= Empty do
13: find action()
14: end while
15: end if
16: for each (represented by the ith) sampling window do
17: c(Wi, Cj)← core(f(Wi, Cj), u(Wi, Cj))
18: Schedk+1,j ← f(Wi, Cj) ∪ u(Wi, Cj) ∪ Schedk,j
19: end for
20: end for
21: Schedk+1 = {Schedk+1,j}, j = 1, . . . , n
22: end procedure

on the new active core and core frequency (Line 7). The loop
exits if the increased f(Wh, Cj) leads Statek,j to violate one
of the constraints. Hence, we reduce f(Wh, Cj) to the previous
level to satisfy the constraints (Line 9).

If Schedk,j cannot satisfy the constraints, we adjust the
active core and its frequency to generate a new schedule
satisfying the constraints (Lines 11–13). Depending on which
constraints are not satisfied (the output of check), the actions
to adjust the core frequency are summarized in Table III. For
the first, second, and fourth constraints (in the first and second
row in Table III), we can identify the sampling windows where
the constraint is violated. For this situation, the action is to
adjust the core frequency in that sampling window. If the third
constraint (in the last row in Table III) is not satisfied, we
find the sampling window that has the highest power, then
reduce the core frequency in that sampling window. In practice,
multiple constraints may be violated in different sampling
windows. In this case, the action to adjust the core frequency
is the combination of the actions in Table III. For example,
if both the second and fourth constraints are violated, we
reduce the core frequencies in the sampling windows where
the temperatures and power exceed their budgets. The function
find action (Line 12) determines the corresponding action
according to Table III and updates Statek,j as in Line 7.

After adjusting the core frequency, the active core based on
the new frequency is determined (Line 16). Both the active
core and its frequency are added to Schedk+1,j (Line 17).
Finally, Schedk is constructed and returned (Line 20).

C. Schedule executor
The schedule executor, SE, determines the active cores and

their frequencies at the beginning of each sampling window. A
straightforward approach is to simply follow the schedule gen-
erated by the SG. However, since the schedule, Sched(k+1), is

generated based on Statek, and the utilization in the (k+1)th

hyper-period may be different from that in the kth hyper-
period, Sched(k+1) may actually violate some or all of the
constraints during run time. For soft real-time systems, it is
acceptable to temporarily violate constraints Eq. (7)–(9) as they
can be compensated for in the next hyper-period. However,
violating the temperature constraint in Eq. (10) may either
cause timing faults or unexpected throttling. Therefore, the SE
should be designed to properly handle such a case.

For each HP–LP core pair, at the beginning of each sampling
window, the SE receives the initial temperature from the SC,
which is the operating temperature of the previous sampling
window, and gets the cores frequencies from Sched(k+1). The
SE checks whether the operating temperature in this sampling
window can bear the thermal threshold assuming the utilization
is 100%. If not, it reduces the core frequency to the previous
level. Since the SE needs to be activated in each sampling
window, reducing the overhead of the SE is critical. We
observe that the thermal threshold and the length of sampling
window are constant. Thus, we can statically establish a safe
initial temperature for every core frequency. Then, at run time,
the SE only needs to check if the initial temperature is larger
than the safe one. If yes, the temperature of this sampling
window may become larger than the thermal threshold. This
method significantly reduces the overhead of executing the SE.

V. EXPERIMENTAL RESULTS

To evaluate the proposed DRIF, we performed experiments
to compare it with two existing approaches. The experiments
are conducted both on a Nvidia’s TK1 board [18] and in a
simulator. TK1 board is built around Tegra K1 SoC which
implements the vSMP architecture and includes 4 HP cores
and 1 LP core. In our experiments, the workload is required
to be light enough to fit on one core. In order to evaluate DRIF
on platforms with multiple HP–LP core pairs, we constructed a
simulator that uses the power and thermal parameters extracted
from the TK1 board. In the simulator, the running temperature
is obtained using Hotspot, a widely adopted thermal modeling
tool [21]. The task set is composed by 10 different tasks from
the MiBench benchmark suite [19], which represent automo-
tive, network, consumer, and security applications. Tasks are
statically mapped to core pairs. Details on parameter extraction
and simulator construction are omitted due to page limit.

We compared the performance of DRIF to two repre-
sentative frameworks, reliability-aware power management
(RA-PM) [6] and multi-objective optimization of system re-
liability (MOO) [16]. RA-PM represents a series of well-cited
work [6]–[8] to minimize the energy consumption under the
SER constraint. MOO finds the Pareto-optimization of SER

TABLE III. ACTIONS TO SATISFY CONSTRAINTS

Unsatisfied Constraint Actions

{(7)}
increase f(Wi, Cj) to the next level
if u(Wi, Cj) > umax

{(8)}, {(10)}
reduce f(Wi, Cj) to the previous level
if p(Wi, Cj) > pbudget or
if T (Wi, Cj) > Tmax

{(9)} reduce f(Wi, Cj), p(Wi, Cj) is max{Pk,j}



6

and LTR by using a genetic algorithm (GA) [16]. We use
two metrics for the comparison: (i) the average probability
of soft-error fault (PoF) over those hyper-periods where the
hard temperature constraint is satisfied, referred to as H-PoF
and (ii) the average PoF over those hyper-periods where all
the constraints are satisfied, referred to as A-PoF.

0.00

1.00

2.00

3.00

4.00

5.00

H-PoF A-PoF

N
or

m
al

iz
ed

 P
oF

Experiment on Simulator 

DRIF MOO RA-PM

0.0
0.5
1.0
1.5
2.0
2.5
3.0

H-PoF A-PoF

N
or

m
al

iz
ed

 P
oF

Experiments on TK1

DRIF MOO RA-PM

Fig. 3. PoFs for the benchmarks running on the simulator and TK1.

We summarize the experimental results in Fig. 3. As can
be readily seen, DRIF achieves a lower PoF than RA-PM and
MOO. DRIF adapts to variations in task utilization and increase
the core frequency to increase SER when the workload is light.
When compared to MOO, DRIF reduces the H-PoF by about
33% and A-PoF by about 31%. RA-PM keeps the SER larger
than an acceptable threshold, and its H-PoF and A-PoF are
much larger than the DRIF and MOO. On average, both the
H-PoF and A-PoF of DRIF is only about 29% for RA-PM.

In order to evaluate the feasibility of DRIF, we counted how
many hyper-periods satisfy the constraints. On average, DRIF
guarantees 100% of hyper-periods satisfy the hard constraint
and 82% of hyper-periods satisfy all constrains, which is only
2% smaller than the MOO and the RA-PM. This small loss
does not limit its applications in many soft real-time systems.
We also evaluated the overhead of DRIF by measuring its
execution time on TK1. The execution time is less than 1 ms,
which is much smaller than the length of hyper-period and
acceptable for many applications.

VI. CONCLUSIONS

We proposed a dynamic reliability improvement framework
to maximize soft-error reliability under lifetime reliability,
power, and real-time constraints. By exploiting the power
features of the HP and LP cores in MPSoC, the framework dy-
namically activates the most power efficient core of each HP–
LP core pair and adjust the core frequencies to satisfy these
constraints. The results show that our approach is effective
in increasing soft-error reliability compared to existing multi-
objective optimization and reliability-aware power manage-
ment approaches and does not degrade real-time performance.

ACKNOWLEDGEMENT

This work was supported in part by NSF under awards CNS-
1319904, CNS-1319718 and CNS-131978.

REFERENCES

[1] W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor system-on-
chip (MPSoC) technology,” IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 27, no. 10, pp. 550–561, Oct.
2008.

[2] ARM, “big.LITTLE technology: The future of mobile.” [Online].
Available: https://www.arm.com/files/pdf/big LITTLE Technology
the Futue of Mobile.pdf

[3] Nvidia, “Variable SMP (4-plus-1tm) a multi-core CPU architecture
for low power and high performance.” [Online]. Available: https:
//www.nvidia.com/content/PDF/tegra white papers

[4] B. Zhao, H. Aydin, and D. Zhu, “On maximizing reliability of real-
time embedded applications under hard energy constraint,” IEEE Trans.
Industrial Informatics, vol. 6, no. 3, pp. 316–328, May 2010.

[5] G. Macario, M. Torchiano, and M. Violante, “An in-vehicle infotainment
software architecture based on Google Android,” in Proc. Int. Symp.
Industrial Embedded Systems, Jul. 2009, pp. 257–260.

[6] B. Zhao, H. Aydin, and D. Zhu, “Enhanced reliability-aware power
management through shared recovery technology,” in Proc. Int. Conf.
Computer-Aided Design, Nov. 2009, pp. 63–70.

[7] ——, “Energy management under general task-level reliability con-
straints,” in Proc. Int. Conf. the Real-Time and Embedded Technology
and Application Symp., Apr. 2011, pp. 285–294.

[8] ——, “Generalized reliability-oriented energy management for real-
time embedded applications,” in Proc. Design, Automation Conf., June.
2011, pp. 381–386.

[9] A. Coskun, R. Strong, D. M. Tullsen, and T. S. Rosing, “Evaluating
the impact of job scheduling and power management on processor
lifetime for chip multiprocessors,” in Proc. Int. Conf. Measurement and
Modeling of Computer System, Jun. 2009, pp. 169–180.

[10] L. Huang, F. Yuan, and Q. Xu, “Lifetime reliability-aware task alloca-
tion and scheduling on MPSoC platform,” in Proc. Design, Automation
and Test in Europe, Mar. 2009, pp. 51–56.

[11] A. Das, A. Kumar, and B. Veeravalli, “Reliability-driven task mapping
for lifetime extension of networks-on-chip based multiprocessor sys-
tems,” in Proc. Design, Automation and Test in Europe, Mar. 2013, pp.
689–694.

[12] T. Chantem, Y. Xiang, X. S. Hu, and R. P. Dick, “Enhancing multicore
reliability through wear compensation in online assignment and schedul-
ing,” in Proc. Design, Automation and Test in Europe, Mar. 2013, pp.
1373–1378.

[13] Y. Ma, T. Chantem, X. S. Hu, and R. P. Dick, “Improving lifetime of
multicore soft real-time systems through global utilization control,” in
Proc. Great Lakes Symposium on VLSI, May 2015, pp. 79–82.

[14] C. Chou and R. Marculescu, “FARM: fault-aware resource management
in NoC-based multiprocessor platform,” in Proc. Design, Automation
and Test in Europe, Mar. 2011, pp. 1–6.

[15] J. Huang, et al., “Analysis and optimization of fault-tolerant task
scheduling on multiprocessor embedded systems,” in Proc. Int. Conf.
Hardware/Software Codesign and System Synthesis, Oct. 2011, pp. 247–
256.

[16] A. Das, A. Kumar, B. Veeravalli, C. Bolchini, and A. Miele, “Combined
dvfs and mapping exploration for lifetime and soft-error susceptibility
improvement in MPSoCs,” in Proc. Design, Automation and Test in
Europe, Mar. 2014, pp. 1–6.

[17] J. Zhou, X. S. Hu, Y. Ma, and T. Wei, “Balancing lifetime and soft-
error reliability to improve system availability,” in Proc. Asia and South
Pacific Design Automation Conf., Jan. 2016, pp. 685–690.

[18] Nvidia, “Jetson Tegra K1.” [Online]. Available: https://developer.nvidia.
com/embedded/develop/hardware

[19] Electrical Engineering and Computer Science Department, University
of Michigan, “Mibench.” [Online]. Available: http://vhosts.eecs.umich.
edu/mibench//

[20] Y. Fu, N. Kottenstette, C. Lu, and X. D. Koutsoukos, “Feedback thermal
control of real-time systems on multicore processors,” in Proc. Int. Conf.
Embedded Software, Oct. 2012, pp. 113–122.

[21] K. Skadron, et al., “Temperature-aware microarchitecture: Modeling
and implementation,” ACM Trans. Architecture and Code Optimization,
vol. 1, no. 1, pp. 94–125, Mar. 2004.

https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.nvidia.com/content/PDF/tegra_white_papers
https://www.nvidia.com/content/PDF/tegra_white_papers
https://developer.nvidia.com/embedded/develop/hardware
https://developer.nvidia.com/embedded/develop/hardware
http://vhosts.eecs.umich.edu/mibench//
http://vhosts.eecs.umich.edu/mibench//

	Introduction
	Big-Little MPSoC And Core Power Features
	System Model and Problem Formulation
	Lifetime reliability
	Soft-error reliability
	Hardware and workload model
	Problem formulation

	Reliability Improvement Framework
	Overview
	Schedule generator
	Schedule executor

	Experimental results
	Conclusions
	References

