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Abstract—MPSoCs consisting of integrated CPUs and GPUs
are suitable platforms for real-time embedded applications re-
quiring massively parallel processing. For such applications, life-
time reliability due to permanent faults and soft-error reliability
due to transient faults are major concerns. Detailed execution
profiling has revealed that a CUDA task’s CPU execution time
significantly increases if the task executes on a different core than
the operating system. Based on this observation, an extended task
model is introduced to consider the execution time dependencies
among tasks and the operating system. A hybrid framework
is proposed to improve soft-error reliability while satisfying a
lifetime reliability constraint for soft real-time systems executing
on integrated CPU and GPU platforms. This framework i)
reduces the total utilization of cores and improves soft-error
reliability via off-line task mapping, ii) achieves a higher lifetime
reliability through task migration at run time, and iii) improves
soft-error reliability by dynamically scaling frequencies of CPU
and GPU cores. Experimental results show that the proposed
framework leads to a system that can execute without soft errors
for at least 4 days (4 times) and 6 days (6 times) longer, on average,
than existing approaches.

Keywords—Resource management; Soft-error reliability; Life-
time reliability; Real-time embedded system; GPU; CUDA.

I. INTRODUCTION

To help meet the performance and power consumption
demands of many applications, various heterogeneous multi-
processor systems on a chip (MPSoCs) have been intro-
duced [1]. One type of MPSoCs is composed of integrated
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CPU and GPU. Thanks to the massively parallel computing
capability offered by GPUs and the general-purpose computing
capability of CPUs, this type of MPSoC has been widely used
in many applications [2], [3]. For such applications, soft-error
reliability due to transient faults and lifetime reliability due
to permanent faults are typically important design concerns.
For example, Nvidia provides a full stack software to support
autonomous driving [3]. The software relies on the GPU’s
parallel computing capability to implement key features such
as detecting obstacles and drivable paths. One big challenge for
autonomous vehicles is to achieve high reliability under harsh
automotive conditions [4]. However, the methods to improve
soft-error reliability may reduce the lifetime reliability. Since
transient faults occur much more frequently than permanent
faults [5], in this paper, we aim to maximize soft-error relia-
bility under a lifetime reliability constraint for soft real-time
applications.

Although most existing papers focus on CPU reliability [6]–
[18], there are also several techniques to improve GPU soft-
error reliability [19]–[22] and/or lifetime reliability [23]–[25].
However, these techniques are designed to recover from soft
errors instead of reducing soft error rate and are not supported
by all GPUs. In addition, they only consider the reliability of
the GPU, not that of the CPU. For MPSoCs with integrated
CPU and GPU, errors from either can cause failure. Hence,
jointly considering the reliability of CPU and GPU is neces-
sary.

This paper systematically addresses reliability concerns for
tasks running on both CPU and GPU. For a given task, our
goal is to maximize soft-error reliability under lifetime relia-
bility and real-time constraints. In addition, to avoid thermal
throttling, we require that the system’s operating temperature
remains lower than a thermal threshold. We consider this
problem in the context of systems using CUDA because it
is widely used in many real-world applications [2]. A CUDA
task uses GPU resources through the driver in the operating
system (OS) and may rely on some I/O services1 to complete.
Note that although this paper focuses on CUDA tasks, the pro-
posed techniques can be readily applied to other programming
models.

In order to solve the above problem, we first explore how the
mapping of CUDA tasks affects task CPU times and then de-
velop a hybrid framework called HyFRO (Hybrid Framework
for Reliability Optimization). This framework i) statically

1In this paper, we refer to the operating system as the operating system
kernel including hardware drivers, and refer to the I/O services as default
services shipped with the operating system such as video and audio services.

http://ieeexplore.ieee.org
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maps tasks to CPU cores2 to improve soft-error reliability, ii)
dynamically migrates tasks among CPU cores to balance the
wear states among cores and hence achieve a higher lifetime
reliability, and iii) dynamically scales frequencies of CPU
and GPU cores to increase soft-error reliability under peak
temperature, real-time, and lifetime reliability constraints.

Our paper makes three main contributions.
1) Our experiments on multiple hardware platforms reveal

that for a CUDA task, CPU time increases if the OS
and/or related I/O services are running on different
CPU cores from the task. Based on this observation,
we generalize a real-time task model to consider the
impact of the OS and I/O services on task execution
times. This model captures dependencies among tasks,
the OS, and I/O services to assist system design and
analysis.

2) We develop an off-line task mapping policy to reduce
the execution times of tasks and the utilizations of cores.
This lower core utilization leads to a higher soft-error
reliability.

3) By considering uneven wear states among cores and
unavoidable workload and operating environment vari-
ations, we design two on-line algorithms. The first one
migrates tasks to balance the wear states among cores,
which is optimal to maximize lifetime reliability if cores
are homogeneous and have same fault-to-failure rate,
but sub-optimal in other cases. The second algorithm
scales frequencies of CPU and GPU cores to further
improve soft-error reliability.

We implemented and evaluated HyFRO on Nvidia’s
TK1 [26] and TX2 [27] chips. Experimental results show that
HyFRO increases the probability that no soft error occurs for
at least 3.9 days (about 5 times) and 7.1 days (about 6 times)
more than existing approaches on TK1 and TX2, respectively.

The rest of the paper is organized as follows. We review
related work in Section II. Section III introduces the system
and reliability models. We experimentally explore how task
mapping impacts execution times in Section IV. Based on the
experiments, we extend the real-time task model in Section V.
Section VI formulates the problem and provides an overview
of our framework. Section VII describes HyFRO in detail.
Sections VIII and IX describe our experimental setup and
results, respectively. Section X concludes the paper.

II. RELATED WORK

MPSoCs with integrated CPUs and GPUs provide both mas-
sively parallel and general-purpose computing capabilities. For
such MPSoCs, several papers have discussed how to achieve a
lower power consumption and higher performance [28]–[31].
Since the integrated CPU and GPU share memory, Jeong et
al. proposed to adapt the priority of CPU and GPU memory
requests to improve GPU performance without sacrificing
CPU performance [28]. Pathania et. al [29] and Prakash et.
al [30] proposed to maximize MPSoC performance by scaling

2Although Nvidia’s GPU has multiple cores, we cannot explicitly schedule
specific cores to execute tasks.

CPU and GPU core frequency. By considering the specific
thermal features of integrated CPUs and GPUs, Wang et al.
developed a framework to partition and map concurrent appli-
cations to maximize system performance under a temperature
constraint [31]. While all above papers consider the specific
features of CPUs and GPUs, none focus on reliability.

Several researches have worked to increase CPU soft-error
reliability [6]–[11] and/or lifetime reliability [12]–[15]. For
soft-error reliability, Zhao et al. [7], [9] and Ma et al. [11]
proposed multiple methods to allocate recoveries to failed
tasks. Zhao et al. [6] and Fan et al. [8] proposed to reduce
soft error rate by increasing core frequencies. In order to
improve lifetime reliability, Huang et al. mapped and scheduled
tasks to guard against aging effects [12]. Das et al. proposed
a machine learning based algorithm to reduce temperature
and mitigate thermal cycling [15]. Since both soft errors and
permanent errors may cause system failure, lifetime reliability
and soft-error reliability have been jointly studied [10], [32],
[33]. In order to improve system availability, Das et al. scaled
core frequencies [10] while Zhou et al. proposed to allocate
replications of tasks and determine core frequencies stati-
cally [32]. Ma et al. focused on “big–little” type MPSoCs and
improved their soft-error reliability under lifetime reliability
constraint [33]. All above efforts are effective in improving
CPU reliability but ignore the GPU reliability.

In contrast to CPU reliability, there has been little research
on GPU reliability [19], [21]–[24]. Tan et al. developed a
framework to estimate the soft-error vulnerability of general-
purpose GPU (GPGPU) [19] and proposed to leverage re-
sistive memory to improve soft-error reliability and reduce
energy consumption [21]. To improve soft-error reliability,
Lee et. al developed a compilation and instruction scheduling
method [22]. To improve GPU lifetime reliability, Namaki-
Shoushtari et al. proposed to balance the wear states of GPU
register files [23]. To minimize GPU aging, Rahimi et. al
developed an aging-aware instruction assignment scheme to
evenly distribute the stress of instructions [24]. Although these
methods improve soft-error reliability or lifetime reliability,
not all GPUs support them. In addition, they ignore CPU
reliability.

In this paper, we consider the reliability of both CPU and
GPU, and propose to maximize reliability by mapping tasks
and scaling core frequencies.

III. PRELIMINARIES

This section introduces our hardware and reliability models.

A. Hardware model
We focus on MPSoCs composed of one GPU (ρG) and

m homogeneous CPU cores ({ρ1, ..., ρm}). Although Nvidia’s
GPUs have multiple cores, we cannot explicitly assign tasks
to specific cores. Hence, we abstract the GPU as a single
processor. The GPU is idle only when no operations execute
on any of the GPU cores [34].

We assume both the CPU and GPU support voltage and
frequency scaling. A higher voltage and frequency generally
produce a higher temperature. We define the utilization of
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a CPU core or the GPU in a given time interval |∆t| as
U = ta

|∆t| , where ta is the amount of time that the core
executes operations. Clearly, a lower core frequency leads to
a higher core utilization. The core utilization is commonly
used to estimate soft-error reliability and guarantee deadline
constraints. The operating temperature of both CPU and GPU
cores can be estimated by using an RC thermal modeling tool
(e.g., HotSpot [35]) or measured by thermal sensors. Generally,
a higher operating temperature leads to a lower lifetime relia-
bility. In order to avoid unexpected thermal throttling, we also
require the operating temperature be lower than a threshold.

B. Soft-error and lifetime reliability model
We consider both soft-error reliability due to transient faults

and lifetime reliability due to permanent faults. Since CPU and
GPU are identical at the device level, the device-level soft-
error reliability and lifetime reliability models are applicable
to both CPU and GPU. The soft-error reliability in a time
interval is the probability that no soft errors occur in that time
interval [32], i.e.,

r = e−λ(f)×U×|∆t|, (1)

where f is the core frequency, |∆t| is the length of the time
interval, and U is the core’s utilization in this time interval.
λ(f) is the average fault rate depending on f [32], i.e.,

λ(f) = λ0 × 10
d(fmax−f)
fmax−fmin , (2)

where λ0 is the average fault rate at the maximum core
frequency. fmin and fmax are the minimum and maximum
core frequency and d (d > 0) is a hardware specific constant
indicating the sensitivity of fault rates to frequency scaling.
The system-level soft-error reliability of an MPSoC is

R = rG ×
m∏
i=1

ri, (3)

where rG and ri (i = 1, . . . ,m) are the soft-error reliability
of ρG and ρi, respectively [33].

We consider four main integrated circuit (IC) failure mech-
anisms in this paper: electromigration (EM), time dependent
dielectric breakdown (TDDB), stress migration (SM), and
thermal cycling (TC) [36]. EM is the dislocation of metal
atoms and TDDB is the deterioration of the gate oxide layer.
SM is caused by directionally biased motion of atoms in metal
wires. Wear due to EM, SM, and TDDB are exponentially de-
pendent on operating temperature. Wear due to thermal cycling
depends on the amplitude, period, and peak temperature of
each cycle. Generally, a lower operating temperature, a smaller
amplitude, and a larger period result in a higher lifetime
reliability. In this work, we use an existing tool [33] to check
whether the lifetime reliability resulting from a thermal profile
exceeds a lifetime reliability constraint. Note that our work
is independent of the lifetime reliability modeling tool used.
The goal of this paper is to improve soft-error reliability under
peak temperature, real-time, and lifetime reliability constraints.
Before developing a framework to address this problem, we
first discuss our observations on the relationship between task
assignment and execution time.

TABLE I. CUDA TASKS USED TO MEASURE ADDITIONAL
EXECUTION TIMES

Name Description Source
VectorAdd Vector addition

CUDA Samples [37]SimpleTexture Texture use
MatrixMul Matrix multiplication
Gaussian Gaussian elimination

Rodinia [38]BFS Breadth-first search
Backprop Back propagation

TABLE II. THE OBSERVED ADDITIONAL GPU TIME ON TK1

Tasks Additional GPU Time
In Millisecond In Percentage (%)

VectorAdd 0.38 0.01
SimpleTexture 0.09 0.00

MatrixMul 0.22 0.11
Gaussian 0.38 0.00

BFS 0.003 0.20
Backprop 0.31 0.68

IV. EMPIRICAL STUDY: EFFECTS OF MAPPING ON TASK
EXECUTION TIMES

In this section, we discuss one of our major contributions.
We focus on CUDA tasks, which use GPU resources through
the driver in the OS and some I/O services. One open question
is whether a CUDA task’s execution time varies if the OS3

and/or related I/O services are executed on different CPU cores
from this CUDA task. We determine the answer by conducting
experiments on different hardware platforms.

We performed experiments on Nvidia’s TK1 [26] chip (with
CUDA 6.5) to measure the CPU times of a CUDA task.
We use the default settings: CPU frequency is 2.1 GHz and
GPU frequency is 72 MHz. Note that we use the CUDA API
cudaEventRecord to record the time stamps before and after
the GPU execution, and the elapsed time between two time
stamps is GPU time. So, if running CUDA tasks at a high
frequency, the elapsed time is about to zero. Hence, in this
measurement, we run tasks at a low GPU frequency and
repeat multiple times to get the average GPU time. However,
for systems having soft real-time requirements, a high GPU
frequency is necessary to guarantee tasks can complete before
their deadlines. To obtain general conclusions, we execute 6
CUDA tasks from different benchmark suites (see TABLE I).
Each task’s increases in CPU times are shown in Fig. 1 and the
averages of additional GPU times are shown in TABLE II. The
additional CPU times can be significant and vary with different
inputs. Although the additional CPU times increase or decrease
with different inputs, they can be predicted if tasks’ inputs are
given. We will use the maximum additional CPU time when
designing our framework. In contrast to the additional CPU
time, the additional GPU time is negligible: the additional
GPU times of all measured CUDA tasks are less than 1%
of the tasks’ execution times. This increase can be ignored in
most soft real-time applications.

We also consider a category of tasks which rely on I/O
services to complete. CUDA tasks YOLO [39] and Thun-
derStruck [40] fall into this category. Both of them rely on

3Although it is possible that kernel threads in the OS are allowed to execute
on multiple cores, not all of operating systems support it. In this paper, we
assume all kernel threads run on the same core.
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Fig. 1. The measured additional CPU times on TK1 if a CUDA task executes
on a different CPU core than the OS.
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Fig. 2. The measured additional CPU times on TK1 if a CUDA task executes
on a different CPU core from the I/O service xorg.

xorg, an I/O service in Linux’s display system. We determined
whether their CPU times and GPU times increase if executed
on different cores than related OS services. The additional
CPU times of YOLO and ThunderStruck are shown in Fig. 2.
Similar as Fig. 1, the additional CPU time can be significant
and must be considered. We also determine their additional
GPU times. For YOLO and ThunderStruck, the additional GPU
times are only 0.02 ms and 0.44 ms, respectively. Since the
additional GPU times are less than 0.1% of the tasks’ execution
times, they can be ignored in most applications.

To determine whether our observation is platform indepen-
dent, we have also measured the execution times of these tasks
on Nvida’s TX2 [27] chip (with CUDA 8.0), which consists of
4 ARM cores and 2 Denver cores. Since the OS must execute
on the primary core (an ARM core) and a task’s execution

0%

2%

4%

6%

0
5
10
15
20

10
K
B

20
K
B

30
K
B

40
K
B

50
K
B

60
K
B

70
K
B

80
K
B

90
K
B

10
0K
B

A
dd

iti
on

al
 C

PU
 

Ti
m

e (
m

s)

Vector Size

VectorAdd

0%

2%
4%

6%

0
5
10
15
20
25

2.6
KB

16
KB

65
KB
14
7K
B
26
2K
B

A
dd

iti
on

al
 C

PU
 

Ti
m

e (
m

s)

Frame Size

0%
2%
4%
6%

0
50
100
150

25
6X
25
6

51
2X
51
2

76
8X
76
8

10
24
X1
02
4

12
80
X1
28
0

A
dd

iti
on

al
 C

PU
 

Ti
m

e (
m

s)

Matrix Size

6.0%
6.3%
6.6%
6.9%

0
40
80
120
160

64
X6
4

12
8X
12
8

19
2X
19
2

25
6X
25
6

32
0X
32
0

A
dd

iti
on

al
 C

PU
 

Ti
m

e (
m

s)

Matrix Size

0%

2%

4%

6%

8%

0
1
2
3
4
5

20K 40K 60K 80K 1MA
dd

iti
on

al
 C

PU
 

Ti
m

e (
m

s)

Number of Nodes

0%

3%

6%

9%

0
2
4
6
8
10

16
38
4
32
76
8
49
15
2
65
53
6
81
92
0

A
dd

iti
on

al
 C

PU
 

Ti
m

e (
m

s)

Layer Size

SimpleTexture

MatrixMul

Gaussian BFS

Backprop

Additional CPU Time (ms) Additional CPU Time (%)

Fig. 3. The measured additional CPU times on TX2 if a CUDA task executing
on a different CPU core from the operating system.
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Fig. 4. The measured additional CPU times on TX2 if a CUDA task executing
on a different CPU core from the I/O service xorg.

time is different if executing on an ARM core or a Denver
core, we only execute tasks on ARM cores and power off
all Denver cores. We set the frequency of the ARM cores to
2.0 GHz and the GPU frequency to 115 MHz. The additional
CPU times of CUDA tasks are illustrated in Fig. 3 and Fig. 4.
The experimental results are similar to those for TK1. Based
on the above experiments, we again observe that executing a
CUDA task on a different core from the OS and/or I/O services
can significantly increase CPU time but not GPU time.

In order to discover the sources of the additional CPU time,
we measured the CPU time of each used CUDA function
by using nvprof, Nvidia’s profiling tool [41]. This reveals
that CPU time due to calling synchronized CUDA functions,
such as cudaMemcpy, significantly increases if the CUDA task
executes on a different core from the OS. Fig. 5(a) illustrates
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Fig. 5. The measured additional CPU times on TK1 if (a) calling the CUDA
API, cudaMemcpy, a different number of times and (b) copying different size
of data between CPU’s and GPU’s memory space.

how the additional CPU time depends on the number times of
cudaMemcpy is called. Generally, a task that frequently calls
synchronized CUDA functions suffers a larger additional CPU
time. The data copy between CPU and GPU memory spaces
is another reason for additional CPU time4 (see Fig. 5(b)).
Hence, we measured the additional CPU time when calling
the memory copy CUDA function, cudaMemcpy, only once
but copying different amounts of data between CPU and GPU
memory space. Fig. 5(b) illustrates how the size of the copied
data impacts the additional CPU time. Although the additional
CPU time increases with more data, the percentage is a
constant. The above experimental results lead to a guideline: to
reduce the additional CPU time, a CUDA task should transfer
more data per copy to reduce the number of data transfers and
thus the number of CUDA API calls.

Based on the above experiments, we conclude that a GPU
task’s CPU time increases if executing on a different core
from the OS and/or I/O services, but its GPU time does not
change. Although all intra-core communications may increase
the execution times of tasks, our experiments show that the
additional CPU times of GPU tasks are much more significant
than those of CPU tasks. Hence, we extend the real-time task
model to account for the additional CPU times of GPU tasks.
In addition, since soft-error reliability is increased if a system
has a lighter workload (in Eq. (1)), we develop a mapping
policy to minimize task CPU times.

V. INTEGRATED TASK, OS, AND I/O SERVICES MODEL

We extend the real-time task model to account for the fact
that a task depends on the OS and I/O services to complete.
The real-time tasks considered in this paper are independent,
periodic, and have soft deadlines. Task τi is associated with
a tuple {ei, di, Ai} where ei is the execution time, di is
the deadline, and Ai captures the dependencies of τi on the
OS and I/O services. The execution time of a CUDA task
consists of two parts: the execution time on CPU, eCi , and
the execution time on GPU, eGi . Since a CUDA task may call

4For TK1 and TX2, although their CPU and GPU share main memory,
memory copy functions, such as cudaMemcpy, still copy data between CPU
and GPU memory spaces.
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Fig. 6. An example of our task model showing tasks rely on the OS and I/O
services to complete.

multiple synchronous and asynchronous CUDA functions, the
relationships among eCi , eGi , and ei are complicated. However,
for CUDA tasks executing on Nvidia’s TK1 or TX2, the CPU
busy waits during GPU operation [42], i.e., eCi including the
time executing code on CPU. Hence, it is safe to assume that
eCi = ei and a longer (shorter) eGi leads to a longer (shorter)
eCi and ei.

For task τi, we use Ai to describe its dependencies on the OS
and I/O services. Ai is a hash table where the key is the name
of an I/O service or the OS, and the value is the additional
CPU time. This table can be built off-line through profiling.
For example, for the task YOLO (in Section IV), entry A =
{OS: 0.7, xorg: 0.5} indicates that YOLO depends on OS and
xorg, an I/O service. The additional CPU times are 0.7 ms and
0.5 ms if executing YOLO on different cores from the OS and
xorg, respectively. Although the additional CPU time varies
with input, we choose the worst-case additional CPU time for
each dependency to guarantee the real-time constraint.

We can use an undirected graph to describe how tasks
depend the OS and I/O services to complete. Tasks, the OS,
and I/O services are represented by nodes, and edges represent
their dependencies. The weight of each edge is the additional
CPU time if the task and the OS or I/O service execute on
different cores. For example, Fig. 6 illustrates that the tasks
YOLO and ThunderStruck rely on both xorg and the OS, but
VectorAdd and BFS only depend on the OS. The BitCount
task from the MiBench Benchmark Suite [43] only uses CPU
resources. It is independent of the OS and I/O services. Since
this graph shows all dependencies, we can use it to develop a
mapping method to minimize additional CPU times of tasks
and reduce the overall workload of cores and hence improve
soft-error reliability.

VI. PROBLEM FORMULATION AND FRAMEWORK
OVERVIEW

In this section, we first formulate the problem addressed in
this paper and give an overview of our solution HyFRO.

A. Problem formulation
The problem in this paper is motivated by applications

such as in-vehicle infotainment system. Such system has
soft deadline, temperature, lifetime reliability, and soft-error
reliability requirements [44]. Before formulating the problem,
we first introduce two concepts: sampling window (W ) and
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profiling window. A sampling window is defined as a time
interval in which the temperature can be treated as constant.
Task migration is not allowed inside a sampling window [33].
A profiling window is composed of multiple equal-length
sampling windows and is used to estimate lifetime reliability.
Note that our proposal can be easily applied to profiling
windows of arbitrary length.

Let us assume that a profiling window is composed of n
sampling windows and the MPSoC has m CPU cores and
one GPU. Our objective is to maximize the system-level soft-
error reliability in each profiling window and satisfy the design
constraints in each sampling window (represented by the jth
sampling window Wj), which is formulated as

max{
n∏

j=1

(rG,j ×
m∏
i=1

ri,j)} (4)

s.t.


max{T (ρi,Wj)} ≤ TC

th,∀ρi,∀Wj (5)
T (ρG,Wj) ≤ TG

th,∀ρi,∀Wj (6)
U(ρi,Wj) ≤ Uth,∀ρi,∀Wj (7)
min{LTR(ρi), LTR(ρG)} > LTRth,∀ρi. (8)

rG,j and ri,j are the soft-error reliability of ρG and ρi at Wj ,
respectively. For any CPU core ρi and the GPU core ρG,
the constraints in Eqs. (5)–(8) should be satisfied. The first
two constraints require the temperature of both CPU cores
and the GPU to be less than some thresholds TC

th and TG
th in

each sampling window. For soft real-time systems, temporarily
violating the deadline and lifetime reliability constraints is
acceptable, but the temperature constraint must be satisfied
to avoid thermal throttling. The third constraint captures the
real-time requirement, where U(ρi,Wj) is the utilization of
ρi at Wj and Uth is the upper bound on utilization to satisfy
schedulability. The last constraint requires the MTTF resulting
from the run-time temperature to be larger than a threshold
LTRth. In our work, the CPU and GPU are integrated on a
single chip and permanent faults from either the CPU or GPU
can cause system failure. Hence, we require that the minimum
lifetime reliability of CPU and GPU cores be larger than the
lifetime reliability threshold [45].

Since soft-error reliability is related to core utilization, we
first design an off-line heuristic to map tasks, the OS, and
I/O services to reduce the total utilization of cores. Then,
we dynamically migrate tasks among CPU cores to achieve
a higher lifetime reliability and scale frequencies of CPU
and GPU cores in each sampling window to improve soft-
error reliability. We integrate these two efforts into a hybrid
framework to solve our problem efficiently.

B. Overview of HyFRO
In this paper, we develop a hybrid off-line/on-line frame-

work, HyFRO, to solve the problem defined in Eqs. (4)–(8)
(see Fig. 7). There are three major challenges to address: i) the
impact of task mapping on task execution times, ii) unbalanced
wear states among cores, which reduces the lifetime reliability,
and iii) workload and runtime environment variations. In order

Task Mapper

State Collector

Frequency
Governor Executor

Off-Line On-Line

MPSoC with CPU and GPU

HyFRO

system state

temperaturesystem state

core
frequency

swapping
workload

task
mapping

Wear Balancer

task
mapping

temperature

Fig. 7. High-level overview of HyFRO.

to address these challenges, the basic idea of our framework
is to i) map tasks, I/O services, and the OS to appropriate
CPU cores statically to minimize additional CPU time, and ii)
dynamically migrate tasks to balance the wear states among
cores, and iii) scale frequencies of CPU and GPU cores to
maximize soft-error reliability under lifetime reliability and
operating temperature constraints.

The off-line component in HyFRO maps tasks, I/O services,
and the OS to appropriate CPU cores (the left part of Fig. 7).
Based on the soft-error reliability model in Eq. (1), soft-
error reliability is improved with shorter task execution times.
We develop a task mapper that allows CUDA tasks, the
OS, and related I/O services to execute on the same core.
This mapping minimizes additional CPU times and reduces
task execution times, which improves soft-error reliability.
However, it reduces lifetime reliability since cores’ workloads
and wear states are uneven [45]. We improve lifetime reliability
by dynamically migrating tasks and balancing the wear states
among CPU cores in the on-line component of HyFRO.

The on-line component in HyFRO i) balances the wear
states among cores by migrating tasks, and ii) improves soft-
error reliability by dynamically increasing CPU and GPU core
frequencies. This component consists of four main parts: a
wear balancer, a frequency governor, an executor, and a state
collector (the right part of Fig. 7). The wear balancer and
frequency governor are triggered at the beginning of each
profiling window, and the executor and state collector are
triggered in each sampling window.

In order to compensate for the impact of the off-line task
mapping on lifetime reliability, the wear balancer swaps the
workload among CPU cores at each profiling window to
balance the wear states among cores and improve lifetime reli-
ability [45]. To improve soft-error reliability, the state collector,
frequency governor, and executor work together to dynamically
increase CPU and GPU core frequencies. In each sampling
window, the state collector collects and saves the system states,
including each core’s temperature, utilization, and frequency.
Based on the system states, at the beginning of each profiling
window, the frequency governor determines cores’ frequencies
for both CPU and GPU for all sampling windows in the next
profiling window. This decision is based on the past system
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Algorithm 1 Task mapping
1: U(si): utilization of the service si, which can be measured offline
2: U(ρi): utilization of the core ρi
3: δi,j : the additional CPU time if si and τj are on different cores
4: ∆: {δi,j , for all dependencies among tasks and services}
5: procedure MAPPING
6: Set U(ρi) = 0 for all cores
7: Sort ∆ in deceasing order
8: for each element in the sorted ∆ do
9: Assume the current element in ∆ is δi,j

10: if Both si and τj have not been mapped then
11: ρl: the core with lowest utilization
12: if U(ρl) + U(si) +

ej
dj
≤ Uth then

13: Map si and τj to ρl
14: else
15: Map si, τj to two cores with lowest utilizations
16: end if
17: end if
18: if τj (or si) is already mapped then
19: ρl: the core τj (or si) executes on
20: if U(ρl) +U(si) ≤ Uth (or U(ρl) +

ej
dj
≤ Uth) then

21: Map si (or τj) to ρl
22: else
23: Map si (or τj) on the core with lowest utilization
24: end if
25: end if
26: end for
27: Map CPU tasks to balance the workload among cores
28: end procedure

states. However, since the workload may change at run time,
the decision made by the frequency governor may not meet
all the constraints in Eqs. (5)–(8). In order to always meet
the hard constraint, i.e., the temperature constraint in Eqs. (5)
and (6), in each sampling window, the executor may modify
that decision to adapt to runtime variations. We elaborate on
the details of HyFRO in the next section.

VII. FRAMEWORK DETAILS

In this section, we provide the details of our framework to
improve soft-error reliability under temperature, real-time, and
lifetime reliability constraints.

A. Task mapper
The task mapper maps tasks, I/O services, and the OS to

appropriate CPU cores to reduce total execution times, which
helps to improve soft-error reliability. Since the assignment-
dependent CPU times of GPU tasks is large, we first try to map
GPU tasks, I/O services, and the OS. Then, we map normal
CPU tasks to spatially balance the workload among cores.
In order to reduce computational complexity, we minimize
additional CPU time, thus improving soft-error reliability (see
Alg. 1). The general idea of this algorithm is to map tasks
to the same core running the OS and related I/O services. In
this algorithm, we represent OS with sos and I/O service as
si. δi,j (δos,j) represents the additional CPU time if the I/O
service si (the OS sos) and task τj are on different cores.
We first sort the dependencies and iteratively select the largest

Algorithm 2 Balance workload among CPU cores
1: procedure BALANCER
2: Sort cores with temperature: T (ρi) > T (ρi+1)
3: for i = {1, . . . ,m− 1} and j = {m,m− 1, . . . , i+ 1} do
4: if T (ρi)−T (ρj) < Tcyc and ρi and ρj not swapped then
5: Swap the workload between ρi and ρj
6: break
7: end if
8: end for
9: end procedure

additional CPU time (supposing it is δi,j), and map si and τj
to appropriate cores (Lines 7–26). If both si and τj have not
been mapped, we attempt to map them to a single core if doing
so would not violate the real-time requirement. Otherwise, we
map si and τj to two cores with low utilizations (Lines 10–
17). If si (τj) is already mapped, we map τj (si) to the same
core running si (τj) if allowed, and map τj (si) to a core
with lowest utilization otherwise (Lines 18–25). After mapping
all GPU related tasks, we attempts to map normal CPU tasks
and spatially balance workload among CPU cores by using
an existing approach [45] (Line 27). Since Alg. 1 checks
every dependency, its complexity is linear in the number of
dependencies among tasks, I/O services, and the OS.

B. Wear balancer

Although the task mapper in HyFRO can avoid additional
CPU time and reduce the total utilization of cores, it leads to
unbalanced core workloads and wear states. For homogeneous
cores having same fault-to-failure rate, balancing the wear
states among cores is optimal to maximize lifetime reliability,
but still sub-optimal in other cases. Hence, to achieve higher
lifetime reliability, it is necessary to migrate tasks and balance
the wear states among cores at run time. In order to not
sacrifice soft-error reliability, we design a heuristic to balance
the wear states by swapping the workload among cores.

The basic idea of the wear balancer is to swap the entire
workload on a core having a higher temperature with that
on another core having a lower temperature (see Alg. 2).
Swapping workload is efficient to balance the wear states, but it
may cause thermal cycling which reduces lifetime reliability.
Hence, at the beginning of each profiling window, we first
sort cores by their temperatures (in Line 2) and only swap
the workloads between cores if the difference in the cores’
temperatures is smaller than a pre-specified threshold, Tcyc
(Lines 3–8). Tcyc is used to ensure that the thermal cycling will
not become the dominant reason for permanent faults [45]. We
can determine the value of Tcyc by using an existing lifetime
reliability modeling tool [46] at design time. Specifically, for
a given thermal profile, this tool reports the effect of both
temperature and thermal cycling on lifetime reliability. Tcyc is
the largest value where the effect of thermal cycling is smaller
than the effect of temperature. The complexity of Alg. 2 is
O(m) where m is the number of CPU cores.
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C. Frequency governor
To improve soft-error reliability, the frequency governor

is triggered at the beginning of each profiling window to
determine core frequencies for the next profiling window based
on the past system states. The resulting, schedule, for the
(q+ 1)th profiling window, Schedq+1, is generated by tuning
the schedule Schedq , along with the system states Stateq .
The initial schedule used in the first profiling window sets the
lowest frequencies of both CPU and GPU cores to honor the
temperature constraint.

The main procedure of the schedule generator is given in
Alg. 3. If a GPU schedule violates the lifetime reliability
constraint, we sort the sampling windows by temperatures,
then iteratively find sampling windows in which the GPU
has the highest temperature. The core frequencies in these
windows are reduced if doing so does not violate the utilization
constraint (Lines 6–14). If the current schedule satisfies the
lifetime reliability constraint for the GPU, we increase the
GPU frequency in each sampling window to maximize soft-
error reliability if doing so does not violate the temperature
constraint (Lines 15–17). We also adjust CPU core frequencies
in a similar manner. The core’s frequencies in the sampling
window with highest (lowest) temperature are reduced (in-
creased) if the previous schedule cannot (can) adhere to the
lifetime reliability constraint (Lines 19–33). After tuning the
schedule in the previous profiling window, a new schedule
for the next profiling window is generated (Line 34). The
complexity of Alg. 3 is O(m×n+n), where m is the number
of CPU cores and n is the number of sampling windows in a
profiling window.

D. Executor
The executor sets the frequencies of CPU and GPU cores

at the beginning of each sampling window. A straightforward
approach is to simply follow the schedule generated by the
frequency governor. However, this schedule is generated based
on past system state and the workload of tasks may vary
at the run time. Hence, this schedule may actually violate
some or all of the constraints. For soft real-time systems, it
is acceptable to temporarily violate constraints Eqs. (7)–(8),
as this can be compensated for in the next profiling window.
However, violating the temperature constraint in Eqs. (5)–(6)
may cause thermal throttling. Therefore, the executor should be
designed to properly handle this case. We statically establish
a safe initial temperature for every core frequency [33]. At
the beginning of each sampling window, the executor only
needs to determine whether the initial temperature exceeds the
constrain. If so, the temperature of this sampling window may
be larger than the thermal threshold, so we need to reduce the
core frequency in this sampling window [33]. We can statically
establish the safe initial temperature, so the time complexity
of executor is O(1).

VIII. EXPERIMENTAL SETUP

We conducted experiments comparing HyFRO with existing
approaches. In this section, we present the existing approaches,
experimental platforms, and workloads in experiments.

Algorithm 3 Determine core frequencies
1: Wp,q: the pth sampling window in the qth profiling window
2: L(ρi,Wp,q): core frequency level of ρi at Wp,q

3: U(ρi,Wp,q): utilization of ρi at Wp,q

4: T (ρi,Wp,q): operating temperature of ρi at Wp,q

5: procedure GENERATOR(Schedq , Stateq)
6: if LTR(GPU) < LTRGth then
7: Sort W: T (ρG,Wp,q, L) > T (ρG,Wp+1,q, L)
8: for i = {1, 2, 3, . . . , n} do
9: if L(ρG,Wi,q)− 1 not violating Eq. (7) then

10: L(ρG,Wi,q+1) = L(ρG,Wi,q)− 1
11: Break
12: end if
13: end for
14: else
15: while T (ρG,Wp,q, L+ 1) ≤ TGth do
16: L(ρi,Wp,q+1) = L(ρi,Wp,q) + 1
17: end while
18: end if
19: if LTR(CPU) < LTRCth then
20: Wh,q: the CPU has highest average temperature at Wh,q

21: for i = {1, 2, . . . ,m} do
22: if L(ρi,Wh,q)− 1 not violating Eq. (7) then
23: L(ρi,Wh,q+1) = L(ρi,Wh,q)− 1
24: end if
25: end for
26: else
27: Wl,q: the CPU has lowest average temperature at Wl,q

28: for i = {1, 2, . . . ,m} do
29: if T (ρi,Wl,q, L+ 1) ≤ TCth then
30: L(ρi,Wl,q+1) = L(ρi,Wl,q) + 1
31: end if
32: end for
33: end if
34: Return the schedule Schedq+1 with updated core frequencies
35: end procedure

A. Comparison targets

We compared our framework with two representative ap-
proaches: the dynamic reliability improvement framework
(DRI) [33] and multi-objective optimization of reliability
(MOO) [10]. Similar to HyFRO, DRI dynamically scales core
frequencies to improve soft-error reliability under temperature,
real-time, and lifetime reliability constraints. However, the
additional CPU times of GPU tasks are ignored and task
migration is not allowed at run time. MOO maximizes the
minimum of soft-error reliability and lifetime reliability by
statically determining the frequencies of CPU cores [10]. Since
both DRI and MOO ignore GPU reliability requirements, they
use the default strategies deployed in the OS to scale the GPU
frequency.

Three metrics are considered in the comparison. The prob-
ability of failures (PoF) due to soft errors quantifies the soft-
error reliability. The PoF is defined as 1 − R, where R
is the system-level soft-error reliability defined in Eq. (3).
Approaches achieving lower PoFs achieve higher soft-error
reliabilities. The percentage of feasible solutions under real-
time constraints (FS-RT) is used to describe the probability of
satisfying real-time constraints. Based on the concept of job,
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i.e., a task instance, the percentage of FS-RT is quantified as
the ratio of the number of jobs meeting their deadlines over the
total number of jobs. Similarly, the percentage of feasible solu-
tions for lifetime reliability constraint (FS-LTR) describes the
capability of satisfying lifetime reliability requirements. FS-
LTR is the ratio of the number of profiling windows achieving
a higher lifetime reliability than the lifetime reliability con-
straint over the total number of profiling windows. Meanwhile,
we set one profiling window to contain 50 sampling windows.
The length of each sampling window is 1 second. Similar to
our previous work [47], a thermal profile with 50 temperature
points (sampling one temperature point per sampling window)
is long enough to analyze the effect of thermal cycling.

B. Experimental platforms

The experiments were conducted on two boards containing
Nvidia’s TK1 [26] and TX2 [27] chips. The TX2 contains
two Denver [48] cores and four ARM Cortex-A57 cores. We
implemented HyFRO on user space and deployed it on one
Denver core. Tasks, OS, and I/O services are executed on
ARM cores. TX2 also contains a Pascal architecture based
GPU that is highly power efficient and supports most modern
graphics APIs. As a low-power chip, the CPU supports mul-
tiple frequencies from 0.35 GHz to 2.04 GHz, and the GPU
frequency ranges from 0.83 GHz to 1.30 GHz. Thermal sensors
are used to sample temperatures of the CPU, GPU, and other
components. Since the default interface only provides one CPU
temperature for all CPU cores, we assume all CPU cores
have the same temperature. TX2 is shipped with an OS based
on Ubuntu and is capable of executing some widely used
benchmarks.

The TK1 provides 4 homogeneous high-performance CPU
cores5 and contains a Kepler architecture based GPU. These 4
CPU cores must share the same voltage and frequency. We use
all CPU cores to execute tasks as well as HyFRO. TK1’s CPU
supports multiple frequencies from 1.32 GHz to 2.32 GHz, and
its GPU can work from 0.25 GHz to 0.54 GHz. Similar to TX2,
we obtain CPU and GPU operating temperatures by reading
thermal sensors and assuming all CPU cores have the same
temperature.

C. Workloads

We now discuss the task set used in experiments. We se-
lected 6 tasks from multiple benchmark suites: MiBench [43],
CUDA samples [37], and Rodinia [38] (see TABLE III)6. Tasks
VectorAdd, MatrixMul, Backprop, and Gaussian are CUDA
tasks and rely on the OS. CRC and Dijkstra only use the
CPU. We measured the CPU and GPU times of these tasks
on TX2’s ARM core at 2.04 GHz and GPU at 1.30 GHz. The
measured execution time and additional CPU time will be

5TK1 also has a low-power CPU core, but it cannot run simultaneously
with the high-performance cores. Hence, in the experiments, the low-power
CPU core is powered off.

6Note that we do not use all cores to execute more tasks. One reason is for
the memory limit. The other reason is to avoid the overhead of GPU whose
resources are shared by all tasks.
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Fig. 8. Probabilities of failures due to soft errors and percentages of feasible
solutions for frame-based tasks running on TX2.

used by the task mapper in Alg. 1. In the experiments, the
jobs of each task are periodically released, and a job missing
its deadline is immediately terminated. Considering different
real-time requirements, we designed two groups of task setups.
In the first group, tasks are frame-based and share the same
period and deadline. We evaluated HyFRO when the deadlines
of 0.50 s, 0.75 s, 1.00 s, and 1.25 s. In the second group, a task’s
deadline and period are randomly selected from the following
ranges: 0.50 s–0.75 s, 0.75 s–1.00 s, and 1.00 s–1.25 s.

IX. EXPERIMENTAL RESULTS

In this section, we compare HyFRO with DRI and MOO.

A. Experiments on Nvidia’s TX2 chip
We first validated our approach on Nvidia’s TX2 chip whose

GPU can work at a high frequency. We compared HyFRO with
MOO and DRI to determine whether HyFRO can improve soft-
error reliability without violating temperature, real-time, and
lifetime reliability constraints.

Fig. 8 illustrates the experimental results when tasks are
frame-based. As can be seen, HyFRO achieves lower probabil-
ity of failures (PoFs) than both DRI and MOO for all considered
periods. The PoFs of HyFRO are 2 × 10−6, 1.6 × 10−6,
1.1 × 10−6, and 9.4 × 10−7 when the periods are 0.50 s,
0.75 s, 1.00 s, and 1.25 s. The achieved PoFs indicate that the
system can work without soft errors about 5.8 days, 7.4 days,
10.2 days, and 12.3 days. In contrast with DRI, HyFRO dynam-
ically migrates tasks among CPU cores and scales GPU core
frequencies, which represents CPU and GPU executing at high
frequencies and reducing soft error rates. Our experimental

TABLE III. TASKS IN EXPERIMENTS

Task GPU Time CPU Time Additional CPU Time
VectorAdd [37] 3.9 ms 356 ms 4 ms
MatrixMul [37] 23.0 ms 120 ms 6 ms
Gaussian [38] 16.6 ms 196 ms 12 ms
Backprop [38] 6.1 ms 125 ms 7 ms

CRC [43] 0 ms 65 ms 0 ms
Dijkstra [43] 0 ms 60 ms 0 ms
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Fig. 9. Probabilities of failures due to soft errors and percentages of feasible
solutions for general periodic tasks running on TX2.

results show that the PoFs of HyFRO is 19.10%, 21.14%,
19.48%, and 20.08% of DRI. With DRI, the time that the
system can run without soft errors is only 1.1 days, 1.6 days,
2.0 days, and 2.5 days when the period is 0.50 s, 0.75 s, 1.00 s,
and 1.25 s, respectively. Similarly, the PoF of HyFRO is only
19.11%, 21.17%, 19.45%, and 19.89% of MOO. It means
that HyFRO can make the system can run 4.7 days, 5.8 days,
8.2 days, and 9.9 days longer than MOO. In addition, since
all these approaches consider real-time and lifetime reliability
constraints, the percentages of FS-RT and FS-LTR of HyFRO,
DRI and MOO are close.

We also evaluated HyFRO on implicit deadline periodic
tasks with randomly generated periods (see Fig. 9). The PoF
of HyFRO is 1.6 × 10−6, 1.2 × 10−6, and 1.0 × 10−6 when
periods of 0.50 s-0.75 s, 0.75 s-1.00 s, and 1.00 s-1.25 s. This
indicates that the system can work without soft errors about
7.0 days, 9.6 days, 11.4 days. The average PoF of HyFRO is
19% of DRI, which translates to HyFRO allowing the system to
successfully work for 7.5 days longer on average, and 5.7 days
longer, in the worst case. Similarly, the average PoF of HyFRO
is 16% of MOO, and HyFRO allows the system to successfully
work for 7.8 days longer on average, and 6.0 days longer, in
the worst case. In contrast to HyFRO, both DRI and MOO use
Linux’s default power management strategy to control the core
frequency of the GPU. With this strategy, the GPU frequency
increases only when the workload is heavy. However, in
our experiments, the GPU workload is not heavy, so the
GPU frequency is generally low. On the contrary, HyFRO
increases core frequency but still honor the peak temperature
constraint. Compared to DRI and MOO, HyFRO achieves a
similar percentage of FS-RT when the workload is light and a
higher one when the workload is heavy. Although the FS-LTR
for HyFRO is 2% lower than DRI and MOO when the workload
is light, the impact on lifetime reliability can be ignored since
it is compensated for in the next profiling window.

We also measured the time and power consumption of
HyFRO. HyFRO generally scales core frequencies once per
second, and this imposes less than 1 ms of overhead. Hence,
we claim that the time overhead and power consumption of
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Fig. 11. Probabilities of failures due to soft errors and percentages of feasible
solutions for general periodic tasks running on TK1.

HyFRO can be ignored.

B. Experiments on Nvidia’s TK1 chip

We conducted experiments on TK1 chip to evaluate the
performance of HyFRO. The GPU in TK1 has a different
microarchitecture from the TX2 and runs CUDA 6.5. This
experiment is used to determine whether the effectiveness of
HyFRO is independent of hardware platform.

Similar to the experiments on TX2, we tested HyFRO for
i) frame-based tasks (see Fig. 10) and ii) general periodic
tasks (see Fig. 11). For the frame-based task set, the PoF of
HyFRO is 4.8×10−6, 3.5×10−6, 2.9×10−6, and 1.9×10−6

for periods of 0.50 s, 0.75 s, 1.00 s, and 1.25 s. This indicates
that the system can work without soft errors for 2.4 days,
3.3 days, 4.1 days, and 6.1 days. Compared to DRI, the PoF
of HyFRO is 0.15%, 0.16%, 0.18%, and 0.15% of DRI when
the period is 0.50 s, 0.75 s, 1.00 s, and 1.25 s. In other words,
DRI can only make the system successfully run 0.08 h, 0.13 h,
0.17 h, and 0.22 h. Compared to Fig. 8, the soft-error reliability
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improvement of HyFRO is much longer. The TK1 has a larger
range of GPU core frequencies with the highest being double
to the lowest. In this situation, HyFRO reduces soft error rate
more. Compared to MOO, the PoF of HyFRO is 0.18% of MOO
at most, and 0.16% on average. This leads to a system that can
run 3.9 days longer than MOO on average and up to 6.1 days.
In terms of satisfying the real-time and lifetime reliability
constraints, HyFRO achieves similar percentages of FS-RT and
FS-LTR to both DRI and MOO.

Fig. 11 shows the performance of HyFRO when running
periodic tasks with randomly generated periods. The PoF of
HyFRO is about 0.16%, 0.18%, and 0.17% of DRI for task
periods of ranges 0.50 s–0.75 s, 0.75 s–1.00 s, and 1.00 s–1.25 s.
This indicates that HyFRO allows the system to function
4.0 days more than DRI on average, and up to 5.4 days.
Meanwhile, the soft-error reliability improvement of HyFRO
over MOO is similar to that over DRI. The time overhead and
power consumption of HyFRO on TK1 are also too small
to be observed. In summary, the above experiments confirm
that HyFRO is better of improving soft-error reliability in all
considered cases.

X. CONCLUSIONS

In this paper, we aimed to improve the reliability of real-time
embedded systems on integrated CPU and GPU platforms.
We observed that tasks CPU execution times may vary with
task-to-core mappings. Based on this observation, we first
extended the real-time task model by considering the depen-
dencies among tasks, the operating system, and I/O services.
We then described a hybrid soft-error reliability improvement
framework that considers temperature, real-time, and lifetime
reliability constraints. We described an off-line mapping policy
to reduce the total utilization of cores and improve soft-
error reliability. We also described an on-line component
that dynamically migrates tasks to achieve a higher lifetime
reliability and adjusts the frequencies of CPU and GPU cores
to improve soft-error reliability. Experimental results show that
our approach increases soft-error reliability without violating
temperature, real-time, and lifetime reliability constraints.

XI. FUTURE WORKS

In the future, we plan to extend our measurements in
Section IV by experimenting with additional GPU frequencies
and hardware platforms. We also plan to establish a concrete
method to model the impact of assign decisions on CPU and
GPU times.
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