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Optimizing Departures of Automated Vehicles from
Highways while Maintaining Mainline Capacity

Eric Meissner, Thidapat Chantem, Member, IEEE, and Kevin Heaslip

Abstract—Automated vehicles have the potential to revolu-
tionize our nation’s transportation systems as they promise
to dramatically reduce congestion, accidents, and fuel usage.
Namely, as it becomes possible to precisely exert the control on,
and coordinate the movement and placement of, vehicles along
a stretch of highway, the separation distance between vehicles
can be reduced, thus increasing flow and minimizing congestion.
Precise and coordinated vehicle controls and placements also
improve predictability, resulting in fewer instances of sudden
braking, which reduce fuel usage and accidents. Most existing
research has focused on the steady-state behaviors and operations
of automated vehicles, such as platooning, assume complete
knowledge of the system, e.g., the number of vehicles and
their destinations, and neglects dynamic or transition operations
such as exiting a highway and lane changing. Uncoordinated
lane changing and exiting behaviors by automated vehicles can
significantly reduce flow of traffic as vehicles will require larger
separations, are forced to slow down, or worse, collide. In this
article, we present a collision-free, runtime approach to efficiently
organize the departures of automated vehicles from a highway
environment while maintaining highway capacity in extremely
dynamic conditions. To maximize the number of safe departures,
the key ideas are to (1) determine when, and where to, an exiting
vehicle should lane change in order to make a successful exit
given current traffic conditions as provided by connected vehicle
technology, and (2) execute the actual lane change operations
using a reservation-based approach. Simulation results show that
by coordinating vehicles behaviors, traffic flow can be improved
by up to 5 times todays typical flow while ensuring a 100% exit
success rate in a collision-free manner.

Keywords—Intelligent transportation system, automated vehicles,
automated roadway, intelligent vehicle routing.

I. INTRODUCTION

For the past decades, traffic congestion has become a major
hindrance to both city dwellers and rural residents. According
to the 2012 Urban Mobility Report [1], drivers in the top 15
largest US metropolitan areas experience, on average, 43 hours
of traffic delay and waste 20 gallons of fuel each year. Travel
time to destination during peak hours is taking 25% longer, and
drivers must now allocate between 80% to 250% more time to
reliably reach their destinations on time. In addition, carbon
dioxide production during congestion is 3.9 times higher than
during freeflow traffic conditions [1]. As such, congestion
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directly leads to decreases in air quality, productivity, and
quality of life, as well as a monetary loss of about $922 on
average per driver per year [1].

It is difficult to eliminate or even reduce congestion by rely-
ing on existing infrastructure, as current freeway systems are
being pushed to capacity. Simply expanding freeway capacity
is a challenge due to financial, environmental, and land use
considerations, especially in urban areas, and may not be an
effective solution to congestion [2]. Non-recurring congestion
such as vehicular crashes may also occur and further reduces
capacity.

Automated vehicles have the potential to greatly reduce
both recurring and non-recurring congestion [3]. The complete
control of automated vehicles makes it possible for vehicles to
follow each other closer than in the case of human drivers,
thus inherently increasing capacity. In addition, since 93% of
all traffic accidents were directly caused by human errors [6],
automated vehicles in highway environments are expected to
reduce the rate of traffic accidents by over 90% [7], as well as
alleviating the burden on human drivers. Since traffic crashes
continue to be one of the top 10 leading causes of death in
the US, with 5.5 million crashes per year (with over 30,000
being fatal), use of automation will also be safer. Last but not
least, widespread automated vehicles are expected to be more
fuel efficient per mile, at the trade-off of a possible increase
in vehicle miles traveled from increased convenience and
availability of shared vehicles to underserved populations [8].

Most existing automated vehicle coordination designs and
analyses have focused on vehicle platooning [9], [10], where
several automated vehicles form a group and follow each other
at a close distance. Dynamic or transition operations such as
lane changing or freeway exiting have largely been ignored
but could significantly affect traffic flow if performed in an
ad-hoc manner [11], [12], [13], [14]. According to Tsao, et al.
the exit success percentage, which is the number of vehicles
successfully exiting a freeway at their intended destination,
is well below 100% [3]. This is not only because a single
automated lane was considered, but also due to less efficient
usage of openings on the highway. Clearly, low exit success
percentage is unacceptable to consumers and may hinder a
wide-scale adoption of automation. To make a step towards the
realization of fully automated freeways and, more specifically,
reduce congestion on freeways, we focus our attention on
optimizing the behaviors of automated vehicles that need to
make an exit from the highway in order to maintain mainline
capacity. The key challenge lies in lane changing to the exit
lane (if required) with minimum interference to other nearby
vehicles and without dangerous and fuel-hungry maneuvers
such as excessive acceleration or deceleration.
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In this article, we present our approach for allowing au-
tomated vehicles to successfully and efficiently exit from a
highway without unnecessarily slowing down traffic flow on
the highway. Our main contributions are three-fold.

1. We propose a coordination-based algorithm to maximize
the number of successful exits by automated vehicles
while maintaining mainline capacity and fuel efficiency.
Our approach does not require prior knowledge of a
vehicle’s origin nor destination.

2. To evenly distribute traffic and, hence, improve flow and
capacity, we present a mechanism to arrange vehicles
in different lanes according to their destination exits.
The proposed mechanism also makes it easier for exiting
vehicles to leave the highway with minimum interferences
on other vehicles.

3. We design, develop, and test a simulation framework,
which is used to assess the performance of the proposed
approach under varying road and operating conditions.

The rest of the paper is outlined as follows. In Section II,
we review existing key literature. Section III provides the
system model under consideration. The overview of our ap-
proach is given in Section IV and the detailed descriptions
in Sections V–VII. Section VIII analyzes the advantages and
potential drawbacks of the proposed approach based on simu-
lation data. Section IX concludes the paper with possibilities
for future work.

II. RELATED WORK

While there are similarities in existing, manual traffic flow
models ([15], [16], [17]), Li et al. showed that traffic flow
models of automated vehicles are substantially different, moti-
vating a need for novel traffic flow control systems. Traffic flow
control plays a crucial role in eliminating highway congestion
and has thus received significant research attention, e.g., [18],
[19]. For instance, Chien et al. utilize both vehicle and roadside
controllers to monitor and control traffic density along a strech
of highway to improve flow [19].

Lane changing is one of the most important and difficult ma-
neuvers a vehicle can make on the highway. When performed
in an unorganized fashion, lane changing has been shown to
negatively impact traffic flows [11], [12], [13], [14]. Broucke
et al. presented a traffic flow theory in automated highway
systems and observed that the coordination of vehicles’ en-
trances into a highway can help to improve flows [18]. Several
controller designs exist for safe lane changing [20], [21], [22].
The problem of lane assignment has been considered by several
researchers [23], [24], [25], [26], [27], [28]. Most existing
work adopted a static lane assignment approach [26], [27],
[24], [25]. The work by Ramaswamy et al. includes lane
assignment to vehicles on automated highway systems [24],
[25]. Such an assignment was shown to be optimal but involves
solving an origin-destination matrix for the set of vehicles
on the highway, which is computationally inefficient and
too complex to recompute in the event that vehicles change
destinations while on the freeway, or in the event of an
anomaly on the roadway such as an accident. Traffic patterns
that change throughout the day, such as rush hour vs. night,

were accounted for by iteratively solving linear programs [26],
[27] and using genetic algorithms [29]. Unfortunately, the
use of LP solvers and genetic algorithms at runtime is still
computationally intensive. More importantly, it is unclear how
successful lane changing is actually ensured (successful lane
changes are typically assumed regardless of traffic conditions)
and how destination changes, for example, are handled in
existing work.

Desiraju et al. discussed a technique to maximize the
number of safe lane changes that can be made on a highway in
a given time duration [30]. However, there is a lack of research
on determining when, how, and why vehicles should make
lane changes, especially while ensuring a high exit success
percentage. Such insights would, in turn, lead to more efficient,
organized, and coordinated automated vehicles. The proposed
work is also more general than existing work in that it makes
use of judicious lane assignment, lane changing, and load
balancing to achieve 100% exit percentage under reasonable
road conditions, and is less prone to complete failure (in
finding a feasible solution) since it adopts a heuristic approach
that is computationally efficient.

Another key concept in automated vehicle coordination is
the platooning of vehicles. Platooning involves tightly coupling
vehicles into groups that communicate and move along the
roadway acting as one larger vehicle. Treating vehicles as a
group enables the vehicles to travel at highway speeds at a
much closer distance than if they were to travel individually
without tight coordination. Platooning is expected to provide
major fuel savings to commercial trucking [31]. While we
limit our discussion to single automated vehicles in this paper
for the sake of clarity, existing research has shown that
platoons can make synchronized lane changes as if they were
single vehicles [32], [33]. Hence, the proposed approach can
be extended to platoons in addition to individual automated
vehicles.

III. SYSTEM MODEL AND ASSUMPTIONS

We present our system model, state our assumptions, and
formally define the problem in this section.

A. Highway Model
First, we assume that highway conditions are homogeneous.

We partition the highway under consideration into multiple
stretches of fixed length. Given a stretch of highway with
m lanes in each direction, we define a set of lanes L =
{L1, . . . , Lm}, where lanes L1 and Lm are the exit and
innermost lanes, respectively. The width of each lane is known
a priori. Vehicle i stands on lane li on road stretch ki. When
in relation to a particular vehicle, the pair (l, k) refers to the
center point of the vehicle within the lane. Exit positions can be
described as (0, k′) . Exit queues are not explicitly considered
in this work.

Each lane Ll is associated with a steady-state velocity
vl [34]. In order to incentivize vehicles to use all lanes of
a highway and, hence, increase traffic flow, the velocities of
inner lanes are higher than those of the outer lanes, i.e.,

v1 < v2 < · · · < vm. (1)
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A vehicle that is not actively performing a lane change while
in lane Ll travels at vl. For safety reasons, a vehicle’s velocity
and acceleration must not exceed the minimum or maximum
velocity or acceleration, vmin , vmax , amin , and amax , respec-
tively. Finally, we assume the existence of roadside equipment,
which allows the infrastructure to communicate traffic updates
and lane changing commands with the vehicles on the highway.

B. Vehicle Model
Vehicles are fully automated, use vehicle-to-infrastructure

(V2I) communications [4], [5] to make maneuvering decisions,
and may be heterogeneous in size and driving characteristics.
The set of vehicles under consideration is denoted as V =
{1, · · · , n}, with an arbitrary vehicle referred to as vehicle
i. There are no restrictions on the lane an exiting vehicle
may be in before it can initiate its departure process. When
not undergoing the exiting process from a highway, a vehicle
travels at the steady-state velocity which is dictated by the
lane it is currently in, as described earlier. The frequency and
number of vehicles entering a stretch of highway is arbitrary.
(In Section VIII, we conducted simulations to test the limit of
our systems in terms of maximum flow rates.)

We use a standard freeway section from traditional highway
capacity analysis without ramps, assuming that the vehicles
rely on some existing methods [35] to safely enter the highway.
That said, newly entered vehicles may eventually change lanes
as dictated by our proposed approach to improve flow and
make it easier for exiting vehicles to leave the highway.

Over a given time period, vehicles traveling in lane Ll at
speed vl cover more distance than those traveling in lane
Ll−1 at speed vl−1 where vl > vl−1. Formally, a vehicle i
is described by the size and safety buffer distance si from its
center, velocity vi, and acceleration ai. When traveling steady-
state in lane Ll, vi = vl and ai = 0. As stated earlier, the
position of the vehicle i is given by li and ki, namely the lane
and stretch occupied by the vehicle. Finally, ei = k′, k′ ≥ ki, is
the stretch of road representing the vehicle’s destination exit.
Assuming that the value for k increases as a vehicle moves
forward, the desired exit position of a vehicle (if it has not yet
missed its exit) is k′ ≥ k. Conversely, for a vehicle that has
missed its exit, k′ < k.

C. Problem Definition
Problem 1: Given a stretch of a highway with V2I communi-
cations, and a set of n automated vehicles as described earlier,
coordinate the behaviors of the vehicles in such a way that
the number of successful highway exits is maximized while
secondarily minimizing fuel usage associated with exiting and
lane changing maneuvers.

IV. SYSTEM OVERVIEW

To exit from a highway, a vehicle may need to lane
change and speed up/slow down. To lessen the impacts of
such dynamic maneuvers on neighboring vehicles, we propose
coordinating exiting efforts among the vehicles iteration by
iteration. We define a time period during which only vehicles
that are deemed eligible at the beginning of the period may
request a lane change during said period (though such a request

may not be granted). Ineligible vehicles must wait until at least
the beginning of the next time period. Said time period is a
user-defined parameter and is kept constant from one iteration
to another unless road conditions change. We will discuss the
selection of an appropriate time period for an iteration at the
end of this section.

We divide each iteration into three main phases, during
which all vehicles on the aforementioned stretch of highway
are considered. Details on each phase can be found in Sec-
tions V–VII.

1. Phase 1 - Determine eligible vehicles: Only vehicles
that are close to their destination exit or which wish to
move to an inner lane to balance traffic are considered for
lane changing. To minimize overhead and allow users to
change their mind, vehicles are responsible for requesting
a lane change instead of having the infrastructure deter-
mine eligibility in a global manner.

2. Phase 2 - Decide destination position for each eligible
vehicle’s lane change: The infrastructure takes the
set of eligible vehicles and determines where (i.e., what
position) a vehicle may potentially lane change to. In this
step, the objective is firstly to maximize the number of
potential lane changes and secondarily to minimize fuel
usage while preserving the total number of lane changes.

3. Phase 3 - Select vehicles to lane change: Since
not all lane change requests may be honored given the
destination positions determined in the previous step, i.e.,
collisions may occur, the infrastructure assigns a priority
to each eligible vehicle to select the set of vehicles al-
lowed to lane change in the current iteration. The priority
of a vehicle is based on the distance to the destination
exit of that vehicle. In addition, a lower-priority vehicle
may be selected for lane changing if its operation will not
interfere with those of higher-priority vehicles.

Figure 1 illustrates the main steps of the proposed approach.
Vehicles that receive a permission to lane change do so syn-
chronously and complete the maneuver before the start of the
next time period, i.e., iteration. Lane changing information is
communicated to the vehicles using V2I. An example scenario
depicting two consecutive iterations is shown in Figure 2.

Since optimal vehicle routing in general involves solving
a large system of differential equations, which is computa-
tionally intensive and require a complete knowledge of the
destination exit of all vehicles, we adopt a heuristic approach
to efficiently solve the problem at runtime. Our approach
determines when and where vehicles should lane change to
in a distributed manner while leveraging V2I to ensure safety.

We now return our discussion to the selection of the period
of an iteration T . The goal is to choose an iteration period
long enough to facilitate a large number of lane changes but
not so long as to impede a vehicle’s ability to make multiple
consecutive lane changes to reach an exit in time. Consider a
vehicle i that currently resides at position (l, k) and which is
to lane change to position (l′, k′), k < k′, where |l − l′| = 1.
Assuming that i uses the maximum acceleration and velocity
to complete the lane change as quickly as possible, the time
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Phase 3: 
Selecting Vehicles to LC

Overview of an Iteration
Phase 2: 

Lane Change Destinations
Phase 1: 

Determining Eligible Vehicles 

(2) For each group, sorted 
descending by priority:

- Remove all groups whose 
trajectories’ conflict with 
the current groups

(3) Begin calculations for next 
iteration

- Lane changes physically 
enacted by groups not 
removed in Phase 3 Step 
(2) 

(4 - Sections VI.C, VI.D) Choose the 
group from the adjacent lane with 
more Vs, using cost for a tie breaker

(2 - Section VI.B) Determine viable 
vehicles (V) to transition into each 
opening

(3 - Section VI.C) Build a maximal 
group of V from adjacent lanes to LC 
into each opening

- Compare nearest left and right 
Vs, choosing the V with a 
more efficient maneuver

- Continue until opening is full or 
all Vs included

(1 - Section VI.A) Divide each lane 
into openingsFor each vehicle:

(1 - Section V.A) Calculate exit 
slack

(2 - Section V.B) Decide whether 
or not to lane change (LC)
- If close to its exit, initiate a LC 

down (Eq. 10)
- If far from its exit, initiate a LC up 

(Eq. 11)

(1 - Section VII) Compute the 
priority (based on nearness to 
exit) and trajectory of each 
grouping chosen in Phase 2 
Step (4)

Fig. 1: The major steps of the proposed approach.

to lane change from (l, k) to (l′, k′) can be expressed as

t = ta + tv, (2)

where ta and tv denote the time it takes for i’s velocity to reach
vmax and the time required at vmax to reach its destination
position, respectively. Mathematically,

ta =
vmax − vl
amax

(3)

tv =
d− xa
vmax

(4)

xa = vmax · ta +
1

2
amax · (ta)

2
, (5)

where d is the distance between (l, k) and (l′, k′) and can
be found by solving for the shortest path distance using
Pythagorean theorem. Note that if xa ≥ d, t is obtained by
solving the following equation

d = vmax · ta +
1

2
amax · (ta)

2
. (6)

Then,

T = max {t| ∀Ll, L′l ∈ L, |l − l′| = 1, (7)
kthreshold = k′ − k},

where kthreshold places a limit on the maximum distance a
vehicle can travel in a single iteration. Guard bands may be
added to T to allow lane changing vehicles to reach the steady-
state velocities of their new lanes. Note that vehicles are not
required to make lane changes at maximum acceleration and

velocity in practice, the maximum acceleration and velocity are
only used to in the selection of a reasonable iteration duration.
In each iteration, lane changes take place at the same time as
the execution of the three major steps in the proposed approach
(Figure 1); lane changes calculated by the latter in the current
iteration will be carried out during the next iteration, and so
on.

V. PHASE 1 - DETERMINING ELIGIBLE VEHICLES

As stated in the last section, the proposed approach is
iterative. In a given iteration, each vehicle independently
determines whether it needs to make a lane change request.
There are two reasons for which a lane change may be desired:
(1) the vehicle is approaching its destination exit, and (2) the
vehicle wishes to transition to an inner lane to travel faster and
even out traffic flow across the lanes. That is, a vehicle that
remains in lane L1 for the entire trip on the highway never
misses an exit (except, perhaps, for equipment malfunction)
but will not have the incentive to do so, as vehicles in inner
lanes are allowed to travel at a higher velocity. Clearly, there
are situations where it makes intuitive sense for a vehicle to
remain in lane L1, e.g., when its destination exit is quickly
approaching. To maximize the number of successful exits
while maintaining mainline capacity by evening out traffic
across the lanes, we propose equipping each vehicle with a
module that will allow the former to determine whether a lane
change up (Ll to Ll+1) or down (Ll to Ll−1) is desired. We
focus our attention on changing from lane Ll to lane Ll+1 or
lane Ll−1, as a lane change from Ll to L′l, |l′− l| > 1, can be
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(a) During the first iteration, vehicles 2 and 5 wish to lane
change, as denoted by the arrows, are determined to be eligible
for lane changing, and are granted permissions to change lanes.
Vehicle 6 is about to make an exit.
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(b) 2 and 5 have completed their lane change operations at the start
of the second iteration.

Fig. 2: An example scenario illustrating two iterations of the proposed approach.

accomplished using a number of single lane changes. Note that
in this step, because vehicles independently determine whether
a lane change request is needed, calculations are performed
locally in an efficient, distributed manner.

As a general rule, vehicles should be encouraged to use the
inner lanes as much as possible for better flow while moving
toward an exit lane in a timely manner as to permit successful
exits. A main challenge lies in adapting to the dynamic nature
of the traffic on the stretch of highway under consideration. For
instance, a vehicle may need to request a lane change down
earlier in heavier traffic to make a successful exit. To tackle this
challenge, we propose an exit-slack based approach to balance
between shorter travel times and successful exits. Using said
approach, vehicles will be able to determine whether a lane
change request should be made to the infrastructure in a given
iteration.

A. A Slack-Based Approach to Lane Changing
Since making a successful exit (or transitioning into an

inner lane in a timely manner) depends on the time it takes
to perform lane changing, which, in turn, depends on traffic
conditions, we define a function ε(t, l) to reflect the urgency
of a lane change. Specifically, during the tth iteration, ε(t, l) is
used to approximate the distance to be traveled before a lane
change request from lane Ll is granted based on the current
traffic flow. Formally,

ε(t, l) = R(t) · T · vl, (8)

where R(t) = α · R
t−1

Mt−1 and is the ratio of the number of
vehicles that requested a lane change in the (t−1)th iteration,
Rt−1, to the number that were actually allowed to make a
lane change, M t−1. The variable R(t) denotes the likelihood
that a vehicle will be granted the permission to make a lane
change during the tth iteration, if such a request is made, based
on success history during the (t − 1)th iteration. As fewer
vehicles are allowed to lane change, R(t) increases, indicating
that a vehicle may be required to wait a longer amount of
time before it is allowed to change lanes. The parameter α is

user-adjustable; a lower value for α implies the user (or traffic
engineer) is more willing to risk missing an exit as long as
they can travel at a higher velocity. We present an analysis of
the impacts of different α values in Section VIII.

Clearly, the value of ε(t, l) may change every iteration. For
a given iteration, ε(t, l) is the same for all vehicles in lane Ll.
Defined as such, a higher value for ε(t, l) will result in vehicles
requesting a lane change earlier to compensate for the expected
delay associated with lane changing and increase their chances
of successful exits. In addition, if ε(t, l) is smaller, exiting
vehicles are less likely to request an earlier lane change, which
would otherwise result in them having to travel at a slower
speed for a longer time duration. Conversely, vehicles wishing
to move to an inner lane would want to do so as early as
possible to maximize the time spent traveling at a higher
velocity.

We leverage ε(t, l) to form the basis for our slack distance
calculations, which will be used by exiting and entering
vehicles alike (see the next subsection). Namely, let di be
the exit-slack distance of vehicle i, which is an estimate on
the total distance traveled by i during the times i will spend
waiting for lane change requests from the current lane li to
the exit lane L1 to be approved. In other words,

di =

li∑
l′=1

ε(t, l′). (9)

For example, if li = 3, then di = ε(t, 3) + ε(t, 2) + ε(t, 1).
Figure 3 provides an example scenario and resultant values
for ε(t, l) and di. It is important to note that the exit-slack
distance is an estimate and may be underestimated. We will
use simulation data to discuss the effectiveness of using the
exit-slack distance to achieve our objective of maximizing the
total number of successful exits in Section VIII.

B. Determining When to Request a Lane Change
We now discuss our algorithm for determining when a

vehicle should request a lane change by leveraging the exit-



6

2 10

ε(t,2)

ε(t,2)

Exit 2Exit 1

ε(t,1)

d2 = ε(t,2) + ε(t,1)

L5

L4

L2

L1

Lanes

L3

Flow Direction

Vehicle

Fig. 3: An example depicting ε(t, 2) for vehicles in lane L2

for the tth iteration. The distance ε(t, 2) denotes an estimate
of the distance 2 and 10 might travel before their lane change
requests are granted. The value for the exit-slack d2 is also
shown and is the sum of ε(t, 2) and ε(t, 1).

slack distance concept discussed in the last subsection. There
are two cases. In the first case, a lane change down may be
required in the event that the estimated distance for a vehicle to
lane change to the exit lane is approaching the distance to that
vehicle’s destination exit. In such a case, the vehicle should
request a lane change in the current iteration if the following
constraint is satisfied.

ei < ki + di (10)

Eq. 10 contains a strict inequality to maximize the chance of
a successful exit. In other words, the purpose behind Eq. 10
is to ensure that a lane change request is made in a timely
manner.

A vehicle may request a lane change up to travel at a faster
velocity, and, inherently, balance traffic flow across the lanes.
This lane change request should only be undertaken if doing
so will unlikely cause the vehicle to eventually miss its exit,
i.e., the exit-slack distance of said vehicle is large enough.
We modify Eq. 10 to include the estimated distance required
to make a lane change up and the corresponding lane change
down that will be necessary to make an exit. Namely,

ei < ki + di + ε(t, li + 1) + ε(t, li). (11)

If Eq. 11 is satisfied, i should request a lane change up
during the tth iteration, as moving into a faster lane typically
allows a vehicle to reach its destination in less time and more
evenly distribute traffic across lanes. The pseudocode for the
algorithm when a vehicle should request a lane change is given
in Alg. 1. For the sake of clarity, some checkpoints are omitted.
Finally, in the event that a vehicle changes its destination, such
a change is communicated to the infrastructure and reflected
when applying our approach in the next iteration; no other
changes are required, as our approach computes eligibility for
lane changing in each iteration based on destination exits.

Algorithm 1 Lane Change Request(L, V, t)

1: for Ll ∈ L do
2: compute ε(t, l) as in Eq. 8
3: for Ll ∈ L do
4: for i ∈ V do
5: compute di as in Eq. 9
6: if Eq. 10 is satisfied then
7: request a lane change from Ll to Ll−1 for i
8: else if Eq. 11 is satisfied then
9: request a lane change from Ll to Ll+1 for i

10: else
11: do nothing

VI. PHASE 2 - DECIDING DESTINATION POSITIONS FOR
ELIGIBLE VEHICLES

Once eligible vehicles have sent their requests for lane
changing to the infrastructure, the latter is required to ten-
tatively assign a destination position for each eligible vehicle.
Recall that such tentative assignment is used in Phase 3 to
determine vehicles that are allowed to perform a lane change
in the current iteration, and does not necessarily guarantee that
every lane change request will be granted. Given a vehicle, its
current lane, and its intended lane, the goal of this step is
to find a position in the intended lane that the vehicle can
feasibly lane change to, e.g., without exceeding the maximum
velocity or acceleration and in such a way that the total
number of feasible lane changes found is optimized. Each
viable destination position for a vehicle considers the safety
buffer both ahead and behind the vehicle, and vehicles are not
assigned positions that would result in an unsafe lane change.
In the ideal scenario, a destination position can be found for
each eligible vehicle.

While the goal set forth is a challenge to accomplish due to
the exponential number of combinations to check, we make an
important observation that helps to reduce the complexity of
the problem under consideration. Since each lane has a well-
defined steady-state velocity, the vehicles within a lane are
essentially stationary in relation to one another. Hence, the
relative distance between any two vehicles in the same lane is
a constant. Taken further, vehicles not seeking a lane change
can be viewed as stationary within a lane. To help visualize
the scenario, let us consider a board game where each vehicle
is a tile. Tiles are organized into columns of infinite size.
Each column moves the tiles on it at some pre-defined speed.
Vehicles that are not lane changing are tiles whose relative
positions are fixed, can be calculated, and cannot be moved.
Given this setup, it is not possible for fixed tiles to collide with
one another. Vehicles making lane changes are tiles that can be
moved left or right (up or down a lane), but which cannot jump
over other tiles. Moving tiles can also increase their velocity, or
slow down, as long as doing so will not impact the other tiles
in front or behind it. A tile shift between columns corresponds
to a lane change that assigns a vehicle into an open position
in the destination lane. In addition, while the tiles in a given
column can be considered fixed since vehicles within a lane
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travel at the same velocity, tiles from the different columns of
the board are not stationary with respect to one another. That
is, a tile wishing to shift into a faster moving column will have
to speed up, while the reverse may not be necessary. To win
the game, which entails shifting all the movable tiles to their
respective desired columns, tile shifts must not collide with
one another, nor are they allowed to touch a fixed tile. All tile
shifts occur simultaneously in a given iteration, which is timed
such that all lane changing vehicles finish their maneuvers and
operate at at their destination lane velocities at the end of each
iteration.

We now describe our approach for deciding the destination
position for each eligible vehicle, i.e., where and how to assign
a tile to its desired column. We conclude this section with a
discussion on how fuel efficiency can be incorporated into our
method. References to cost in the following subsections refer
to fuel usage, and an explicit method for calculating cost is
given at the end of the algorithm discussion.

A. Assigning Open Space
To assign vehicles to positions, one solution is to perform

an exhaustive search that assesses every possible combination
of vehicles and viable positions. Clearly, such a search is too
computationally intensive, especially for runtime use where
decisions must be made in a timely manner. To accommodate
lane changing of a group of vehicles (VV), we define an
opening w to be a section of open highway in a single lane of
size sw. To reduce complexity, we propose grouping vehicles
together and treating each group as a single vehicle, relying on
the fact that groups are built such that lane changes within the
group do not collide. A number of vehicles may be grouped
together if (1) they are currently in the same lane, (2) they
share a common destination lane, and (3) they are currently
near one another. For a given VV, the corresponding opening
must be large enough to accommodate the VV, i.e. sVV ≤ sw,
where sVV =

∑
i∈VV si is the total length of vehicles in VV.

The idea, then, is to pair each group of vehicles with an
appropriately sized opening that can fit all the vehicles.

By pairing a group of vehicles with an opening, a set of lane
changes can be determined and is said to be valid if and only if
no two groups of vehicles (and, by extension, no two vehicles)
will cross paths if these lane changes were to be carried out.
Before detailing our proposed algorithm, we discuss two rules
to be followed. Rule 1: A vehicle that has not requested a lane
change will not be forced to modify its driving behavior, e.g.,
it will not be forced to speed up, slow down, or change lanes.
Likewise, a vehicle that has requested a lane change but is not
granted a permission will continue traveling on its current lane
with no additional maneuvers. That is, it will not be forced to
move out of the way to make room for vehicles allowed to lane
change. Rule 2: A vehicle can only perform one lane change
at a time. In other words, a vehicle currently traveling on lane
Ll may not switch to lane Ll+1, in order to pass vehicles in
Ll, change back to Ll, and move on to Ll−1, which is its
requested lane. Implicitly, the two rules state that a VV may
not be assigned to an opening which is blocked by one or more
vehicles in the same lane as the VV. These rules are enacted

not only to reduce the complexity associated with finding a
match between a VV and an opening, but also for fairness
and fuel efficiency reasons. Namely, by not forcing vehicles
to change their behaviors, e.g., move out of the way, we ensure
that no undue burdens are placed on the other vehicles. At the
same time, vehicles will likely be assigned open positions that
are closer to them, saving fuel and reducing the chance of
collisions.

Our algorithm for assigning vehicles to open positions is
given in Alg. 2. Given the stretch of highway under consid-
eration, the set of all openings in a given lane Ll is created
(Line 3). For each opening, feasible vehicles from both lanes
Ll+1 and Ll−1 are determined (Lines 4–5). For the exit lane L1

(innermost lane Lm, resp.), only the vehicles from L2 (Lm−1,
resp.) is considered. VVs are then constructed (Lines 7–8)
using the Build VV algorithm, detailed in the next subsection.

The best VV from the upper lane is then compared to
the best VV from the lower lane (Lines 9–16). Ultimately,
the VV that contains more vehicles are selected since our
objective in this step is to assign as many vehicles to an
opening as possible. Ties are broken in favor of the VV with
a lower cost (Subsection VI-D), as shown in Lines 17–25.
Afterwards, vehicles in the selected VV are removed from
further consideration and the process is repeated for each
opening for all the lanes.

B. Determining Viable Vehicles
The pseudocode for the Build VV algorithm, which is used

by Alg. 2, is shown in Alg. 3. In order to form VVs, we
must first eliminate vehicles that, for efficiency, fairness, or
safety reasons, are not good candidates for lane changing
into a particular opening in a given iteration. Let us consider
an opening in lane Ll. The vehicles wishing to lane change
into Ll must be from either lane Ll−1 or lane Ll+1 . We
now categorize these vehicles into three distinct sets: vehicles
directly adjacent to the opening are in AV, whereas vehicles
to the left (down) and right (up) of the opening are denoted
as LV and RV, respectively. (Separate AV, LV, and RV are
maintained for lanes Ll−1 and Ll+1.) Since vehicles in AV
are the vehicles nearest to the opening and whose lane changes
would be most efficient, they are always considered viable and
are put in the set VV (Lines 1–2).

Next, vehicles in LV and RV are considered for their
viability to make a lane change into an opening using the
following two conditions (Line 3). Figure 4 provides an
example scenario illustrating the use of such conditions.
• Condition 1: Maximum Distance. First, all vehicles in

LV and RV whose distances from the opening under
consideration exceed the maximum distance kthreshold
defined in Section IV are eliminated from further con-
sideration as they are deemed too far away and would
require excessive or forbidden acceleration/speed to lane
change into that opening.

• Condition 2: Blocked. Second, as a consequence of our
fairness rules discussed in the last section, any vehicle that
would need to move around a vehicle that is not looking to
lane change to reach the opening is removed. Specifically,
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Algorithm 2 Assign Open Positions(L, V)

1: solution← ∅
2: for Ll ∈ L do
3: Ol ← set of openings in lane Ll
4: Ul ← set of vehicles currently in Ll+1 wishing to

change to Ll
5: Dl ← set of vehicles currently in Ll−1 wishing to

change to Ll
6: for w ∈ Ol do
7: VVUp← Build VV(Ul, w)
8: VVDown← Build VV(Dl, w)
9: if |VVUp| > |VVDown| then

10: solution← solution ∪VVUp
11: for i ∈ VVUp do
12: Ul ← Ul − i // Remove i from further

consideration
13: else if |VVUp| < |VVDown| then
14: solution← solution ∪VVDown
15: for i ∈ VVDown do
16: Dl ← Dl − i
17: else
18: if cost(VVUp) < cost(VVDown) then
19: solution← solution ∪VVUp
20: for i ∈ VVUp do
21: Ul ← Ul − i
22: else
23: solution← solution ∪VVDown
24: for i ∈ VVDown do
25: Dl ← Dl − i
26: return solution

let the k-range of the opening w under consideration
be [kl, kr], with kl, kr denoting the left and rightmost
positions, respectively. Given a vehicle i in RV with the
x-position ki where ki > kr, i is eliminated from further
consideration if there exists a vehicle not wishing to
change lanes j whose kj satisfies the following constraint:
kr ≤ kj < ki. Similarly, a vehicle i in LV is eliminated
from further consideration if ki < kj ≤ kl.

C. Building a Vehicle Group

Recall that AV, LV, and RV are created separately for Ll−1
and Ll+1 for a given lane Ll. From the previous subsection,
all the vehicles in AV have been added to VV for a given
opening. Our goal now is to fill VV with vehicles from the
updated LV and RV sets in order to maximize the number of
vehicles that are mapped to the opening w under consideration,
i.e., we wish to maximize the final size of VV while reducing
cost (defined in Subsection VI-D).

The intuition for building an efficient, collision-free vehicle
group is that vehicles closest to the opening have the easiest
and fastest path to make the lane change. A VV is iteratively
built by compare the nearest vehicle in VR against the nearest
vehicle in VL. The vehicle which is less costly is selected and
the process is repeated until either all vehicles in VR and VL

have been allocated to the VV, or the size of VV is equal to
the number of vehicles the opening can hold.

As long as there is open space left in w, i.e., sVV < sw
and there are vehicles in LV or RV (Line 4), we continue the
process of filling VV. Specifically, we turn our attention to the
two vehicles in LV and RV that are nearest to the opening,
namely nlv = {max(ki)|i ∈ LV} and nrv = {min(ki)|i ∈
RV} (Lines 5–6). If either nlv or nrv is too large to be added
to VV without making sVV > sw, we cease choosing vehicles
from LV or RV, respectively, because if the nearest vehicle is
too large it cannot be added and as such no other vehicles in
that set can make the lane change without violating Rule 2.
In this case, vehicles from the other set, LV or RV that was
not removed are added to VV until it is full.

In the case both nrv and nlv can be viably added to VV,
there are two possible solutions. Either nlv is added to VV
at this time or nrv is. The solution that costs less is chosen
(Lines 9–14).

To add either nlv or nrv to VV, we consider the nearest
section of opening large enough to safely contain the new
vehicle. For either nlv or nrv , let such a placement be (l, q).
There are two cases. In the first case, no part of (l, q) has
been assigned to a vehicle, in which case nlv claims it. In the
second case, some part of (l, q) has already been assigned to
another vehicle in VV. In this situation, nrv claims (l, q), and
the vehicle that previously occupied (l, q) shifts far enough to
free up enough space for the new vehicle to enter, shifting
into position (l, q − si). For nlv , the vehicle that used to
claim (l, q) shifts to position (l, q + si) (Lines 7–8). Such a
“shift” operation is recursive in that if there is already a vehicle
assigned to positions (l, q− si) or (l, q+ si), then that vehicle
must also shift. Figure 4 provides an illustrative example of
the shift operation.

If we assume all vehicles are of a standard size, the problem
reduces to a one-dimensional packing problem where for each
iteration of the while loop we pack a vehicle into the opening
from either VR or VL, whichever option is less costly.

After building the two new potential vehicle groups using
the left and rightmost vehicles, the VV with lower overall cost
is chosen as the new VV and the added vehicle removed from
VL/VR, respectively. This process continues until either VL
and VR are both exhausted, or sVV is equal or greater than
sw.

We now state some important properties of our algorithms
using a number of lemmas, a corollary, and a theorem. We
omit the proofs due to space constraints.

Lemma 1: The Shift algorithm, which is used by Alg. 3,
always terminates after having added exactly one vehicle to
VV after at most |VV| shifts.

Corollary 1: The worst-case time complexity of Shift is
O(|VV|).

Lemma 2: For this and all following proofs we assume all
vehicles are of a standard size. Let S be the maximum number
of vehicles that can fit into the opening under consideration
and |V| be the maximum number of vehicles in a single lane
adjacent to the opening. Then, the time complexity of the
Build VV algorithm (Alg. 3) is O(|V|2 + S2).

While the worst-case time complexity of Alg. 3 is not
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Vehicle Not LC Into L2

a

B D

b

C

c

E

AV = {B}
RV = {C, D}
LV = {A}
VV in Alg. 3: 
  Pass 1: VV = {(B,3)} // B is assigned to slot 3
  Pass 2: VV = {(B,2), (C,3)}, if cost(C) < cost(A) (1)
          VV = {(A,1), (B,3)}, otherwise (2)
  Pass 3: VV = {(B,1, (C,2), (D,3)}, if (1) and cost(D) < cost(A)

      VV = {(A,1), (B,2), (C,3)}, if (2) 

kthreshold

L4 L2

d

OpeningVehicle Requesting LC Into L2

AV = {b}
RV = {}
LV = {a}
VV in Alg. 3: 
  Pass 1: VV = {(b,2)}
  Pass 2: VV = {(a,1), (b,2)}

F

L5

L4

L2

L1

Lanes

L3
32 1

Fig. 4: This figure depicts the vehicles that are considered for a given opening. For simplicity, we assume all vehicles are of
the same size. There is space enough for 3 vehicles in the central opening, and we label the individual spaces available as
(3, 1), (3, 2), (3, 3) for clarity. From L4, B is the only adjacent vehicle so |AV| = 1 and |w| is reduced to 2. A is the only
vehicle to the left considered, as F is outside the range as dictated by kthreshold . C and D are considered from the right, but
not E as |w| is now 2. From L2, b is the adjacent vehicle, and a is considered for the lane change from the left. Since d is not
lane changing, it blocks c, which is not allowed to lane change despite its intention.

Algorithm 3 Build VV(V, w)

1: AV← {i ∈ V|kl ≤ ki ≤ kr}
2: VV← AV
3: construct LV and RV using Conditions 1 and 2
4: while LV ∪RV 6= ∅ and sVV < S do
5: nlv = {max(ki)|i ∈ LV}
6: nrv = {min(ki)|i ∈ RV}
7: rvv = Shift(VV, nrv, w) // VV ∪ nrv , with nrv

appended to the right of VV
8: lvv = Shift(VV, nlv, w) // nlv is appended to the left

of VV
9: if cost(rvv) < cost(lvv) then

10: VV← rvv
11: VR← VR− nrv
12: else
13: VV← lvv
14: VL← VL− nlv
15: return VV

negligible, we observe that in real-world settings, open space
in a lane is unlikely to be contiguous and there will be

vehicles directly adjacent to openings, both of which would
significantly improve the average-case time complexity of
Alg. 3. In addition, it is possible to reduce the length of a
stretch of highway to further reduce runtime overhead.

Lemma 3: For a given opening, kthreshold , and the rules
stated in Subsection VI-A, Alg. 3 always returns the VV with
a maximum number of vehicles.

Note that if vehicles are not assumed to be of identical size,
the problem of maximizing the number of vehicles in VV
becomes computationally difficult, NP-Hard in fact, and our
algorithm no longer guarantees a maximum vehicle group for
obvious reasons, though does still find a greedy solution.

Theorem 1: The worst-case time complexity of Alg. 2 is
O(m·S ·|V|2+m·S3), where m is the number of lanes on the
stretch of highway under consideration, |V| is the maximum
number of vehicles in all the lanes, and S is the maximum
number of vehicles that can could fit into the openings.

D. Calculating Cost
In this work, we aim to minimize cost, which is fuel usage.

According to Berry, more aggressive drivers use more fuel per
mile, where aggression is generally defined as how rapidly and
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often a driver speeds up and slows down [36]. Such driving
behaviors lead to poor uses of gained velocity and frequent
speed changes. In the context of automated vehicles, unneces-
sary acceleration/deceleration during lane changes should be
avoided in order to minimize fuel usage. It has been shown that
estimates of fuel usage can be reliably derived from instanta-
neous velocity and acceleration values [37], [38]. Minimizing
acceleration and deceleration also serves to maintain passenger
comfort during maneuvers.

Since the steady-state velocity of a given lane is fixed in
this work, a lane change from Ll to Ll+1, for instance, would
begin with the involved vehicle starting out at vl and eventually
ending at vl+1. As a result, the fuel cost associated with
a lane change can be defined as the fuel used during the
transition period, which would mostly be due to the applied
acceleration/deceleration. Intuitively, the cost to perform a lane
change up into an inner lane would be larger than that required
to lane change down into an outer lane, since vehicles in an
inner lane travel at a higher speed. That said, it is important
to encourage vehicles to move into an inner lane in order to
balance traffic across the lanes. For these reasons, we define the
cost of an individual lane change to be the average acceleration
applied during the transition period, i.e., starting from the
steady-state velocity of the departure lane to the steady-state
velocity of the destination lane. Note that it is possible for a
vehicle to exceed/fall below the steady-state velocity of the
departure/destination lane in order to make a lane change
and the accelerations/decelerations used are included when
computing the average. Formally, the cost of a lane change
is

cost(i, li, l
′
i) = ā(i, li, l

′
i)− aδ(i, li, l′i). (12)

where li and l′i denote the departure and destination lanes of
i, respectively, ā(i, li, l

′
i) is the average acceleration used to

execute a lane change, and aδ(i, li, l′i) is the base acceleration
needed to change from vinit to vfinal . This base acceleration
is the average acceleration it would take a vehicle to go from
vinit , to vfinal in the course of a single iteration. Consequently,
it is more cost effective for a vehicle to lane change into
a nearby position instead of one that is farther away, as all
lane changing maneuvers must be completed at the end of an
iteration. It follows, then, that the cost of all the lane changes
in a VV is the sum of all the individual lane changes, i.e., by
a set of vehicles V’,

cost(V’) =
∑
i∈V’

cost(i , li , l
′
i ). (13)

VII. PHASE 3 - SELECTING VEHICLES TO LANE CHANGE

In the last step of the proposed approach, VVs have been
tentatively assigned to openings in such a way that both
maximizes the total number of vehicles assigned a position to
lane change to and guarantees no collisions between vehicles
in the same VV. The challenge, now, is to ensure that no
collisions will occur among different VVs. We propose a
priority-based approach to tackle this challenge. Specifically, a
priority value is assigned to each vehicle based on its urgency
associated with lane changing, e.g., to make a successful

exit. A priority value is then assigned to each VV based on
the highest-priority value it contains. The goal is to allow
for simultaneous, collision-free lane changes of the highest-
priority vehicles.

To accomplish this step, we leverage our previous work [30],
which aimed to maximize the total number of successful
lane changes. The main difference between this work and the
previous work is that the latter made no attempt to coordinate
the behaviors of the vehicles to achieve a common goal; it
merely facilitates as many lane changes as possible without
accounting for the fact that some vehicles may miss their
destination exits. In the original algorithm [30], a stretch of a
highway is divided in a series of 3 contiguous-lane highways.
For each 3-lane highway, only vehicles from the left and
right lanes wishing to lane change into the center lane are
considered. Of these vehicles, the one in front is the first
vehicle selected for lane changing. All vehicles wishing to
change lanes but whose operations would conflict with the first
vehicles cede the right to lane change until the next iteration.
The next vehicle that is selected for lane changing in the same
iteration is the first vehicle downstream that wishes to change
lanes and whose operation would not conflict with the vehicle
already selected, and so on.

Instead of granting vehicles the permission to lane change
based on their positions, we propose modifying the existing
algorithm by directly considering the urgency to lane change
associated with a given vehicle. Specifically, a higher priority is
assigned to a vehicle as it approaches its destination exit, since
the vehicle would have less leeway in making a lane change
and, subsequently, its exit. Such a priority-based scheme can
also be extended to allow for emergency exits required by the
passengers due to low remaining fuel level or unexpected lane
merging. More formally, each vehicle i is associated with a
priority value pi, which is the ratio of the exit-slack distance
of i and the actual distance to i’s destination exit. In other
words,

pi =
di

ei − ki
. (14)

As stated earlier, the priority of a VV is taken to be the
highest priority of all the vehicles in that VV. A VV’s priority
is then compared to those that have tentatively been assigned
to nearby openings, as determined in the last step. In case of
conflicts, the highest-priority VV is selected. We expect the
computational overhead associated with this step to be low, as
the total number of VVs is expected to be much fewer than
the total number of vehicles wishing to make a lane change.
In the worse case, this step will require O(|VVS|2), where
VVS denotes the set of all the VVs in this iteration.

We will rely on existing work [30] to ensure the safety of
a given lane change given derived acceleration and velocity
values. Since only non-conflicting VVs are selected to proceed
with the actual lane changes and since vehicles in a given VV
are guaranteed to not interfere with one another during lane
changing, our proposed approach is guaranteed to be collision
free.
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VIII. RESULTS

Due to the difficulty involved in a large-scale deployment of
fully automated vehicles, we opted to perform extensive sim-
ulations to assess the performance of the proposed approach.
We discuss the results in this section.

TABLE I: Simulation Parameters

Parameter Value(s)

Length of highway segment 9 km
Number of lanes (each direction) 5
Number of exits/entrances 16
Distance between exits/entrances 0.5 km

Lane Velocities

v1 : 26 m/s
v2 : 28 m/s
v3 : 30 m/s
v4 : 32 m/s
v5 : 34 m/s

Carry-over traffic 1 20%
Length of a vehicle 2 < 5 m
Velocity range 21–39 m/s
Acceleration range 2.8–3.2 m/s2

Iteration time T 3 11.35 s
α 4 1.5
kthreshold

5 75 m

A. Setup

For simulation purposes, we assumed that vehicles are
homogeneous in size and driving characteristics (recall that
the proposed approach can readily be used in scenarios where
vehicles are heterogeneous). The length of a vehicle plus
the safety following distance was no more than 5 m and is
comparable to the safety distance used by Marinescu et al. [39].
The stretch of highway under consideration was approximately
9 km long with an exit/entrance every 0.5 km starting at the
2.5 km marks, for a total of 15 exit/entrance pairs, to model
urban roadway conditions. On this stretch of the highway, there
were 5 lanes in each direction. Lane velocities range from
26 m/s to 34 m/s, which are consistent with current highway
velocities. The steady-state velocity v1 of the outermost lane
L1 is 26 m/s whereas that of L5 is 34 m/s. The parameters
used are summarized in Table I and were extrapolated from
the parameters used in existing work [3], [36].

1Percentage of vehicles that were already on the highway before the
simulations began. The vehicles’ initial positions and destination exits were
randomly generated.

2Including safety buffers.
3See Eq. 7.
4See Eq. 8.
5See Subsection VI-B, Condition 1.

The destination exit of a vehicle was randomly generated
using a uniform distribution, with all the vehicles exiting
before the end of the stretch of highway under consid-
eration. Vehicles either entered the highway through one
of the entrances or were already traveling on the high-
way at the start of a simulation. In the latter case, the
initial positions of these existing vehicles were randomly
generated. Simulations were conducted for varying flows,
ranging from moderate traffic (1,800 vehicles/hour/lane) to
highly dense traffic (23,400 vehicles/hour/lane). In today’s
driving conditions, the typical maximum traffic flow is about
2,400 vehicles/hour/lane [40]. Since it is expected that auto-
mated vehicles will significantly increase flows, the afore-
mentioned flow range was used in our simulations. Below,
we describe and discuss the critical flow beyond which exit
performance of the vehicles are severely degraded and which
should be avoided.

It is worth noting that since lanes have fixed steady-state
speeds, the traditional traffic theory relations of Greenshields
Fundamental Diagram of Traffic Flow between density, flow,
and velocity can be simplified [17]. That is, an increase in
traffic flow directly corresponds to an increase in density. In
fact, density in our system is identical to flow. Flow, which
is the number of vehicles/hour/lane that enter the roadway,
can be controlled using ramp metering, as is commonplace in
urban highways, and thus calculated. In our system, traffic
density can be defined as γ = vehicles/hour/lane

meters/hour/lane . Because
the rate of the roadway’s parameterized speed is constant,
higher rates of entering vehicles imply a larger γ. That is,
if the rate of vehicles entering is exactly the rate that a lane
moving at the set speed can maximally allow, then there is
no open space. In such a case, both the maximal flow and
density is reached as (1) there is no open space to allow
for more vehicles, and (2) the flow rate of vehicles can no
longer increase. Consequently, the maximum flow occurs when
γ = 1. Since all the vehicles plus their safety buffer in the
simulation are no larger than 5 m, and since the average steady-
state velocity across lanes is 30 m/s, the maximum theoretical
flow is bounded at 30m/s

5m/vehicle · 60s · 60m = 21, 600 vehicles/
hour/lane= 108, 000 vehicles/hour across the entire roadway,
with a static capacity of 200 vehicles/km/lane. This calculation
determines the maximum flow between any two points on
the roadway. However, because vehicles can choose to exit
anytime after they enter the freeway, the end-to-end flow of the
freeway can be much larger. In the extreme, if all vehicles that
entered the freeway at entrance i exited at exit i+ 1, then the
overall flow of the freeway could be no larger than the number
of exits multiplied by the flow between any entrance/exit pair.
In our case this bounds the maximal flow at 16 exits ·108, 000
vehicles/hour = 1, 728, 000 vehicles/hour across the roadway.

B. Comparison Points
To draw meaningful conclusions on the effectiveness and

efficiency of our proposed algorithm, we would ideally com-
pare its performance to existing work. However, since, to the
best of our knowledge, we are the first to define and solve the
problem of maximizing the number of successful exits from
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a highway under dynamic conditions, there are no existing
algorithms that can be used for comparison purposes.

To provide an upper bound on how close the solutions in
Phase 2 (2) are to the optimal grouping solution, we imple-
mented a brute-force approach which guarantees the optimal
grouping of vehicles as well as their opening assignment.
Such an approach was too computationally intensive for our
benchmarks with 9 kilometers of roadway (the computer used
in simulations ran out of memory and crashed). We were able
to compare the brute-force approach against Alg. 3 on a mini-
benchmark of length 0.5 km, consisting of 3 lanes and a single
exit/entrance). For all 500 iterations, Alg. 3 was able to find
the optimal grouping/lane assignment in a fraction of the time.

C. Results
We now discuss the exit failure rates of the proposed

algorithm and analyze the time overhead associated with our
approach.

1) Exit Failure Rates: We use the exit failure rate EFR as
the main metric to assess the performance of the algorithms.
EFR denotes the ratio of CM , the number of vehicles that
have missed their destination exits in a given iteration to make
an exit, and CE , the total number of vehicles wishing to make
an exit during that same iteration. In other words,

EFR =
CM

CE + CM
. (15)

Correspondingly, the exit success rate ESR is

ESR = 1− EFR. (16)

The exit failures rates for the different flows are presented
in Figure 5. As shown, using our proposed algorithm results
in perfect exit success rates at traffic flows that are up to
4.5 times the current maximum flows. Using our algorithm,
a 100% exit success rate is maintained for flows of 12,600
vehicles/lane/hour and below, with the EFR only rising to
between 2.4–7.1% even with the highest flow rate of 21,600
vehicles/hour/lane.

Tsao et al. have previously reported a 7% drop in exit
success rate per exit with a flow of 2,300 vehicles/hour/lane on
a 3-lane highway, though only one lane was fully automated
with the remaining lanes being occupied by human drivers [3].
Clearly, our proposed approach presents a substantial im-
provement over both existing automated and non-automated
roadways. Such an improvement is due in large part to the
proposed coordination scheme since (1) vehicles not changing
lanes are never affected by those seeking a lane change, and (2)
vehicles are judiciously distributed across the lanes, allowing
a high flow rate to be maintained. At the same time, vehicles
making lane changes can rely on the predictable behaviors of
others on the highway, resulting in safer maneuvers.

2) Time Overhead: To assess the suitability of using the
proposed algorithm at runtime, we examine the time overhead
associated with our algorithm. Note that the acceptable time
overhead would only need to be smaller than the duration of an
iteration, as actual lane changes during an iteration and com-
putations for the next iteration can take place simultaneously

Fig. 5: Exit failure rate as a function of flow.

assuming negligible communication overhead. (If the latter is
a concern, the length of an iteration can be increased.) At
all flows tested except the highest of 21,600, the proposed
algorithm appears to be computationally feasible for online
use for an iteration lasting 11.35 s (Table I). The maximum
time overhead of 12.44 s at 21,600 vehicles/lane/hour is only
slightly above the required compute time. We would like to
note also, that the simulator was coded in Python, which is
generally not optimized for computational speed, and ran on
an AMD A10-5750M APU processor with 8GB of RAM. With
more sophisticated hardware platforms, as would be the case
with next-generation infrastructure, and optimized code, we
believe the proposed algorithm will be suitable for online use
at very high flow rates.

3) Sensitivity Analysis on α and kthreshold : We now
examine how user-defined parameters affect the exit failure
rate. First, we consider α (Subsection V-A), which dictates
when a vehicle should request a lane change, be it up or
down. Our sensitivity analysis on α (Figure 6) showed that
the optimal value for was set at α = 1.5, but that values
between α = 1.25 · · · 2.00 were acceptable, implying that
vehicles can indeed efficiently choose how much risk to take
without significantly impacting the overall flow. The second
parameter we performed a sensitivity analysis on, kthreshold,
also showed good convexity and the optimal value was around
90m. In practice, such sensitivity analyses can be performed
prior to system deployment for expected flow rates to achieve
a 100% exit success rate.

D. Discussions
It is important to not understate the substantial improvement

our proposed system achieves in the context of today’s traffic
flow. As long as entering traffic is regulated in some manner
so that highway traffic does not reach the flow of 14,400
vehicles/hour/lane, which is several times today’s maximum
flow, traffic jam in the traditional sense can be avoided with
the exception of accidents or equipment malfunctions while
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Fig. 6: Sensitivity Analysis of the α-parameter.

maintaining perfect ESR and guaranteeing bounded travel
times.

In this work and when coordinating the behavior of auto-
mated vehicles in general, a trade-off must be made between
higher flow and higher exit success rate, though simulation
results show that automation is able to significantly improve
on both metrics when compared to the nation’s current trans-
portation system. Since coordination and control allow for
more predictable driving, e.g., the ability to guarantee an
exit can be made at a very high probability at certain flow,
the proposed algorithm can potentially help to simplify route
planning techniques in both commercial and personal settings.

While it is difficult to quantitatively assess the influence
of the proposed algorithm in terms of fuel consumption,
especially in the context of today’s transportation system,
we conjecture that the impact is mostly positive, as fuel-
intensive maneuvers such as excessive speeding up/slowing
down, additional travel due to missed exits, as well as stop-and-
go traffic are dramatically reduced if not eliminated. Existing
research has already drawn such a conclusion for automated
vehicles under steady-state conditions. The actual fuel savings
for dynamic operations remain to be quantified.

IX. SUMMARY & FUTURE WORK

This paper presented an approach for safely organizing
automated vehicles in a dynamic highway environment to
maximize the exit success rate with minimum impact on
mainline traffic flow. The proposed method is iteration-based
and consists of three main steps: finding eligible vehicles to
make lane changes towards an exit, determining destination
positions, and selecting vehicles for the actual lane changes.
To increase flow, a mechanism was proposed to balance traffic
across the lanes by providing vehicles with an incentive to
move into inner lanes in order to travel at a faster speed. Since
the proposed approach reduces excessive speed up/slow down

maneuvers involved in lane changing, it is also fuel-efficient.
Simulation results reveal that, using our algorithm, vehicles
are able to always make successful exits at flow rates that are
up to 3 times today’s maximum flow with human drivers. The
method presented in this paper can also be applied to stretches
of highways where exits are in the left lanes and/or when
vehicles need to make an exit to switch to different interstates,
for example.

This work can be extended in several directions. First, the
proposed algorithm can be leveraged for use when highway
conditions are heterogeneous. Second, it can be adapted to
assist during platoon splits or formations. Third, since our work
provides some insights on vehicle coordination and control in
highly dynamic environments, it may be used as a stepping
stone towards automation in city streets. Finally, the proposed
algorithm can be used in conjunction with route planning
software to provide passengers with a more positive travel
experience.

REFERENCES

[1] D. Schrank, B. Eisele, and T. Lomax, “TTI’s 2012 urban mobility re-
port,” Texas A&M Transportation Institute. The Texas A&M University
System, Tech. Rep., Jun. 2012.

[2] G. Duranton and M. Turner, “The fundamental law of road congestion:
evidence from US cities,” American Economic Review, vol. 101, no. 6,
pp. 2616–2652, Oct. 2011.

[3] H.-S. Tsao, R. Hall, and B. Hongola, “Capacity of automated highway
systems: effect of platooning and barrier,” California Partners for
Advanced Transit and Highways (PATH), Tech. Rep., 1994.

[4] A. Bohm and M. Jonsson, “Supporting real-time data traffic in safety-
critical vehicle-to-infrastructure communication,” in Proceedings of the
Conference on Local Computer Networks, Oct. 2008, pp. 614–621.
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