
Network-Aware Dynamic Voltage and Frequency Scaling ∗

Bren Mochocki, Dinesh Rajan, Xiaobo Sharon Hu, Christian Poellabauer,
Kathleen Otten and Thidapat Chantem

Department of CSE
University of Notre Dame
Notre Dame, IN 46556

{bmochock, dpandiar, shu, cpoellab, kotten, tchantem}@nd.edu

Abstract
Reducing energy consumption is an important consider-

ation in embedded real-time system development. This work
examines systems that contain a DVFS managed CPU exe-
cuting packet producing tasks and a DPM-controlled net-
work interface. We introduce a novel approach to minimize
energy consumed by the network resource on such a sys-
tem, through careful selection of voltage and frequency lev-
els on the CPU. Contrary to existing claims which state that
DVFS should not be employed when the CPU is not a signif-
icant consumer of energy, we show that our DVFS technique
can reduce system energy by as much as 35%, even when
the CPU energy consumption is negligible. Furthermore,
we motivate the need to balance the CPU and network en-
ergy and present two techniques to do so. One is based on
off-line analysis and the other is a conservative on-line ap-
proach. We then validate the proposed methods using both
simulation and an implementation in the Linux kernel.

1 Introduction

The design of energy-aware systems has attracted con-
siderable attention from the real-time system community in
recent years. Much progress has been made with regard
to task scheduling to reduce energy consumption in vari-
ous hardware components or resources in a real-time sys-
tem. For example, energy management for CPUs utilizing
the widely popularDynamic Voltage and Frequency Scaling
(DVFS) technique is well studied for different task models
(e.g., [25, 28]), circuit-level models (e.g., [8, 16]), and sce-
narios (e.g., [21, 14]). Reducing the energy consumed by
other types of resources, such as memory, disks and network
cards has also been investigated by a number of researchers
(e.g., [13, 24, 26, 19, 27]).
Almost all real-time embedded systems are implemented

by more than one hardware resource. In a large portion of
∗This work is supported in part by NSF under grant numbers CNS-

0410771 and CNS-0545899 and by the University of Notre Dame Slatt
Fellowship.

handheld devices, where energy consumption is a critical
concern, the system often contains a network card and/or
other I/O devices in addition to the CPU. It is not difficult
to imagine situations where reducing the energy consump-
tion of one resource can increase the energy consumption
of others, resulting in reduced savings or even an increase
in the total energy consumed.
In this paper, we examine a common system architecture

that consists of a DVFS capable processor and a network
interface managed by its own independent dynamic-power-
management (DPM) mechanism. This architecture can
greatly ease the system development effort and is widely
adopted. Our objective is to reduce the energy consump-
tion of such a system as a whole by maximally exploiting
the DVFS and DPM capability in the presence of dynamic
changes.
One main contribution of this paper is the introduction

of a novel network-aware DVFS algorithm that, rather than
minimizing CPU energy consumption, seeks to minimize
the energy consumed by the network interface. Energy is
saved by carefully controlling packet release times through
DVFS, while exploiting the known behavior of the net-
work’s DPMmechanism. Contrary to existing claims which
state that DVFS should not be employed when the CPU is
not the dominant consumer of system energy [30], we show
that our DVFS technique can reduce system energy by as
much as 35% when the CPU energy consumption is negli-
gible compared to the network interface. Our second con-
tribution is an on-line method for reducing the system-wide
energy. This method leverages a network-aware DVFS al-
gorithm and a CPU-centric DVFS algorithm. The technique
is easy to implement and has a low run-time overhead. Fi-
nally, we have implemented these algorithms on an experi-
mental platform to validate the work.
The rest of the paper is organized as follows. Section 2

presents the problem definition and also reviews related
work in detail. In Section 3, we use a motivational example
to illustrate the significance of the problem under consid-
eration and reveal some interesting properties. Sections 4
and 5 give the details of our technique, while Section 6 sum-
marizes key experimental results. Finally, we conclude the
paper in Section 7.

1

2 Preliminaries

We consider a system with a DVFS capable CPU and
a DPM capable network interface. (Note that our methods
can be readily extended to other types of devices with DPM
capabilities.) Below, we first describe the task and hardware
model under consideration, the necessary notation and the
formal problem definition. Next, the related work is pre-
sented in detail.

2.1 Problem Formulation

We consider real-time applications consisting of a set of
n periodic tasks, T = {T1, T2, · · · , Tn}. Each task, Ti, is
described by its worst case execution cycles, wci, average
case execution cycles, aci, and best case execution cycles,
bci, with wci ≥ aci ≥ bci. In addition, each task has a
period, pi, and relative deadline, di, with di ≤ pi. Each task
is invoked periodically and we refer to the k-th invocation
of task Ti as job Jk

i . Each job is described by a release
time, rk

i , deadline, dk
i , finish time, fk

i , and actual execution
cycles, ck

i , where bci ≤ ck
i ≤ wci. Tasks are scheduled

according to the popular preemptive earliest deadline first
(EDF) algorithm.
We assume that each CPU job, say Jk

i , generates one
transmission request to the network interface at the end of
its execution, denoted by Qk

i . The size of a request is de-
noted zk

i and must satisfy bzi ≤ zk
i ≤ wzi, where bzi and

wzi are the best and worst case request sizes of task Ti,
respectively. We discuss the relaxation of assumptions in
Section 7.
The DVFS processor used in our system can operate at

a finite set of voltage levels V = {V1, ..., Vmax}, each with
an associated frequency F = {F1, ..., Fmax} and power
Pr1

= {P 1
r1

, ..., Pmax
r1

}. The network interface has a fixed
service rate and is managed by a timeout-controlled dy-
namic power management (DPM) scheme. This scheme
is described by a constant timeout tout, time to sleep tts,
and a time to wake ttw. The resource has five valid states,
{active, listen, shutdown, startup, sleep}, each with an
associated power, Pr2

= {P act
r2
, P lst

r2
, P dn

r2
, P up

r2
, P sl

r2
}.

The utilization of a task set is the sum of each task’s
worst case execution time over its period. That is, the worst-
case utilization can be computed as

Uwc =
n

∑

i=1

wci

pi × Fmax
. (1)

The average-case utilization, Uac, and the best-case utiliza-
tion, Ubc, can be computed similarly.
The timeout policy is presented in Figure 1 as a finite

state machine. The resource remains in the active state
as long as an unserviced request is present. As soon as
all requests have been serviced, the resource enters the
listen state and remains in the listen state until an unser-
viced request becomes available, or the timeout is reached,
whichever comes first. If the timeout is reached, the re-
source then enters the shutdown state for exactly tts time

!"!"#$%&"'()*(""""""""#$%#!"(#+&,-(&!".)/0&("*&)$1"""""""""'"!"'&*2#/& '()*("""""""""(!"'3-($,45"'()*(
"#!"'&*2#/&"(#+&""#!"/-**&5("(#+&"""##"!"(#+&"(,"'%&&. ##)!"(#+&"(,"4)0&"""""")"!"4)0&-."'()*(

!"*6 #$%# 7 #*8 9& # 7"##" 6""(

#
:
;
"##"

6
""
(

9&# 7"##) 6")"

!"#$%&'(

)*$+,-

.+/$-(

!0--1234-#1

!" !"!"#! #$"! %"&$

$

! '"%& !"!"!"
" !"

#!!"
$#"#

$

!%!" &# $!!"

Figure 1. The network timeout policy [5].
units before entering the sleep state. The resource stays in
the sleep state until an unserviced request becomes avail-
able, at which point it enters the startup state for exactly
ttw time units before once again entering the active state.
The break-even time is the amount of time that a resource

must remain in the sleep state before less energy is con-
sumed than remaining in the idle state [15]. The break-even
time can be computed as,

tbe = max{
E0 − P sl

r2
× t0

P lst
r2

− P sl
r2

, t0}, (2)

where t0 = tts + ttw and E0 = tts × P dn
r2

+ ttw × P up
r2
.

Lu et. al. show in [15] that for a general workload, setting
tout = tbe will consume no more than twice the energy of
an optimal DPM policy.
The problem of interest, stated formally in Problem 1, is

to minimize the energy of both the CPU and network simul-
taneously. Since many CPU-centric DVFS techniques are
already available, our strategy is to first develop a network-
centric DVFS technique, and then judiciously apply one of
the two or a combination of the two techniques (i.e., the
CPU or network centric algorithm), for a particular system.

Problem 1 Given a system with a DVFS managed re-
source, r1, an autonomous timeout-based DPM resource,
r2, and a schedulable set of tasks, T , identify a valid volt-
age schedule for r1 such that the overall system energy,
Er1

+ Er2
, is minimized.

2.2 Related Work

Very little work has been done to minimize network
(or other I/O device) energy through its dependence
on a DVFS-ready CPU. One closely related paper by
Poellabauer and Schwan does balance CPU energywith net-
work energy [22]. This method takes into account CPU
scheduling, frequency selection and packet scheduling in
a cooperative way. However, it requires modification of
the network card driver, CPU and packet schedulers, re-
sulting in increased development time. Some researchers
have examined the problem of energy consumption by mul-
tiple resources in various architectures, such as clustered

2

systems [11], sensor networks [6] and general distributed
systems [7], but no real-time constraints are considered.
Several studies have shown that wireless network cards

can consume a significant amount of energy and greatly re-
duce the battery life of mobile devices. To alleviate this
problem, a number of probabilistic algorithms were pro-
posed in [18] to allow the network card to shut down for a
long period of time. Mechanisms that control packet trans-
missions to form bursts have also been shown to be effec-
tive. For example, [1] considers multimedia applications
on portable devices where the server controls packet trans-
missions to clients so that the network cards at the clients’
end can go into the sleep mode. It is also possible to queue
messages while the network card is asleep [13], extending
idle intervals. Finally, [2] proposed an adaptive framework
that considers the applications’ intentions on using the net-
work and allows users to determine the trade-off level be-
tween energy consumption and system performance. Un-
fortunately, all of the above work fails to address any poten-
tial negative effects on the CPU.
Several papers have examined multiple CPUs as re-

sources. For example, [9] and [29] consider independent
real-time tasks executed on multiple processors. The inde-
pendent task model is not able to capture the systems that
we are interested in this paper, where packet release times
depend on task completion times. For dependent tasks, the
problem is solved off-line usingmathematical programming
methods (e.g., [3]), or use some sort of heuristic methods
(e.g., [29]). With an off-line algorithm, it is rather difficult
to respond to dynamic changes which often exist in a real-
time system.
Zhuo and Chakrabarti present a technique to minimize

the system-wide energy in [30]. They treat non-CPU de-
vices as additional sources of static power that consume en-
ergy whenever a requesting task is executed on the CPU.
Based on this assumption, they compute a system-efficient
frequency for each task that minimizes the energy-per-
cycle. Additionally, they conclude that when non-CPU de-
vices dominate the total system energy, DVFS should not be
used. Contrary to this conclusion, we show that when a de-
vice is actively managing its own power consumption (e.g.,
the DPM mechanism of a network interface), the proper use
of DVFS can reduce the system-energy by as much as 35%,
even when the CPU energy is negligible.

2.3 Look-Ahead Earliest Deadline First

In this section, we briefly review the main features of a
popular on-line DVFS algorithm, called look-ahead EDF
(LaEDF), as it will be used in our proposed approach [21].
The major features of LaEDF are summarized in Algo-
rithm 1. Array cLeft is used to estimate the remaining cy-
cles of the current job of each task. This value is updated
at each scheduling point (Lines 4–5 and 7–8) and during
execution (Lines 11–12). The function defer() (Line 13) at-
tempts to push as many cycles from cLeft beyond dn as
possible (Line 14). Next, the total number of cycles, s that
must be executed before the next deadline, dn is computed
(Line 15). Finally, a frequency is chosen that will complete

Algorithm 1 Look-Ahead EDF (T , F)
1: INPUT: The task set, T and valid frequency set F ;
2: select frequency(x):
3: Use min Fi ∈ F such that x ≤ Fi/Fmax;
4: upon task release(Ti):
5: cLefti = wci;
6: defer();
7: upon task completion(Ti):
8: cLefti = wci;
9: di += pi;
10: defer();
11: during task execution(Ti):
12: decrement cLefti;
13: defer():
14: Delay as as much of cLeft past Dn as possible;
15: s = those cycles that must be executed beforeDn;
16: select frequency(s/(dn − curT ime));

Figure 2. An example 2-task system with a
voltage schedule selected to minimize CPU
energy (MCPU) and network energy (MNET).
The downward arrows represent packet re-
lease times.

by dn all cycles that cannot be deferred (Line 16).

3 Motivational Example

In this section, we use a motivational example to illus-
trate the potential and the challenges when multiple re-
sources are considered to achieve lower energy consump-
tion for the overall system.
Consider a system consisting of a CPU and a network

interface device, as described in Section 2.1, with tts =
ttw = to = 0.5, and a packet transmission time of 0.5.
Figure 2 illustrates an example 2-task system, with p1 = 3,
p2 = 4 and wc1 = bc1 = wc2 = bc2 = 1. Assume
that at the completion of each task activation, there is one
network access request. Notice that with two major power
consuming devices, one could imagine a voltage scheduling
policy that favors either the CPU or the network. The CPU
targeted policy would strive to achieve the minimum aver-
age voltage/frequency for all tasks [28], while the network
targeted policy would strive to maximize the time in sleep

3

mode of the network device. We refer to the CPU centric
policy as MCPU and the network centric policy as MNET.
The schedule resulting from each policy is given in Fig-

ure 2. Notice that jobs in MCPU do not complete execution
until time 12, while those in MNET finish at 10. Addition-
ally, notice that the network is in sleep mode nearly 3 times
more in MNET than in MCPU.
One important question that must be answered is how

to choose between MCPU and MNET. The answer to this
question depends on the relative contribution of each de-
vice to the total system power consumption, and on the tim-
ing parameters of the task set in question. In the example
from Figure 2, when the CPU dominates the network card,
MCPU reduces the energy consumed by 50% when com-
pared to MNET. (We say that the CPU dominates the net-
work card if the CPU’s active power is much higher than
that of the network card and vice versa). However, when
the network dominates, MNET will reduce the system en-
ergy by as much as 24% when compared to MCPU 1.

4 MNET and MCPU algorithms

Based on the observations in the previous section, su-
perior MCPU and MNET algorithms play a critical role in
saving system-wide energy for the architecture under con-
sideration. In this section, we introduce one algorithm for
MNET and one for MCPU. To reduce run-time overhead,
we strive to make the algorithms simple to implement and
share as many common operations as possible.

4.1 MNET: Timeout Aware Scheduler

From the motivational example in Section 3, one can al-
ready see that energy can be saved at the network by ar-
ranging packets into bursts. This will maximize the time
available for the network to remain in the sleep state and
reduce the overhead due to transitioning between sleep and
active modes. Since the CPU is DVFS capable, it can be
exploited to adjust the release time of the packets. With
this idea in mind, we introduce two heuristics that guide the
MNET algorithm.

1. If the current job can produce a packet by executing at
the maximum processor frequency before the network
timeout occurs, then doing so will extend the length of
the on-going packet burst, thus increasing the length of
the next sleep interval.

2. If the current job cannot produce a packet before the
network timeout occurs, then executing at the mini-
mum feasible processor frequency will (ideally) merge
the next packet with the subsequent burst, thus extend-
ing the length of current sleep interval.

1For this example, the CPU model is an ARM11 [4], while the network
model is a D-Link Personal Air: Wireless USB Bluetooth Adapter, DBT-
120 [10]. Details of these models can be found in 6.2 under Simulation
Setup.

The proposed MNET algorithm, called Timeout Aware
Scheduler (TAS), is given in Algorithm 2. Here, the CPU
is made aware of the state of the network-interface packet
queue with the help of the operating system (Lines 2–6).
The time at which the network goes to sleep is computed at
Line 8, while the remaining cycles before the currently ex-
ecuting task is completed are estimated at Line 10. Finally,
which heuristic to apply is determined by comparing the ex-
pected packet release time at the maximum frequency with
the network sleep time at Line 11. If the expected packet
release time at the maximum frequency is greater or equal
to the network sleep time, i.e., situation (2) above, the min-
imum (Line 12) frequency is selected. Otherwise, the max-
imum (Line 14) frequency is selected.
We compute the minimum frequency using Algorithm 1.

The rationale is to lower the CPU frequency to the point
where it is most energy efficient for the CPU while ex-
tending the sleep interval of the network interface. A key
feature of LaEDF is that it identifies the minimum possible
frequency at which to execute the active task without vio-
lating future deadlines. Though there are other algorithms
exhibiting the same feature, LaEDF is rather simple to im-
plement and has comparable performance in terms of en-
ergy savings [12]. A significant amount of detail is hidden
Algorithm 2 Timeout Aware Scheduler(T , F , R)
1: INPUT: The task set, T , a valid frequency set F and
the resource being managed, R;

2: idle start(R):
3: if(state(R)=idle, shutdown or sleep):
4: return last time at which R became idle;
5: else:
6: return next time at which R will become idle;
7: upon job release or finish time t:
8: tsleep = idle start(R) + tout;
9: Let Ti be the active task;
10: qi = avg-case cycles before next request of Ti to R;
11: if(qi/Fmax + curT ime ≥ tsleep):
12: select frequency based on LaEDF;
13: else:
14: set frequency to Fmax;

in TAS by Line 10. Although we assume that packets are
consistently generated at the end of a job’s execution, the
actual system will require monitoring of the tasks’ past per-
formance to identify if and when a packet is produced. In
Sections 6.1 and 7 we offer more details on how this is ac-
complished.

4.2 MCPU: Limited Look-Ahead EDF

For the CPU-centric DVFS algorithm, there are many
possible choices. For the same reason that we chose LaEDF
in TAS, we choose LaEDF as the basis of our MCPU al-
gorithm. However, the greedy nature of LaEDF that was
an advantage for TAS is now a key drawback for MCPU.
Specifically, LaEDF applies all available slack to the cur-
rently executing job. When the active job requires close to
its worst-case execution cycles to complete, this causes sub-

4

sequent jobs to execute at elevated CPU frequencies, which
leads to less energy savings.
We control the greediness of LaEDF by modifying

LaEDF in a way similar to the method proposed in [17]
for fixed-priority systems. The idea is to maintain a CPU
frequency no less than the frequency required to meet the
average-case processor utilization of the current task set.
We call this an average-case limiter. With this limiter, it is
less likely that the currently executing job takes so much
slack that it causes later jobs to run at a much higher fre-
quency. The average-case utilization can be computed off-
line from measurements of the task set in question and/or
estimated on-line by recording the completion times of jobs.
We refer to this technique, given in Algorithm 3, as Limited
Look-Ahead EDF (LLE).
Algorithm 3 Limited Look-Ahead EDF(T , F)
1: INPUT: The task set, T and valid frequency set F ;
2: limit(freq):
3: Uac =

∑n
i=1(aci/(pi × Fmax));

4: freq=max(freq, Fmax × Uac);
5: return freq;
6: select frequency(x):
7: Use min Fi ∈ F such that x ≤ Fi/Fmax;
8: Fi = limit(Fi);
9: include remaining functions from LaEDF;

5 Algorithm Selection

To maximally reduce the total system energy consump-
tion, a key challenge is how to balance the conflicting goals
of MCPU and MNET (i.e., LLE and TAS). In this section,
we begin by introducing a parameter for capturing the rel-
ative importance of the CPU and the network card in terms
of saving energy. Then, we present two methods to bal-
ance MCPU and MNET, an off-line selection approach that
uses known system specifications, and a hybrid approach
that can adapt to on-line changes in utilization and task-set
composition.
Consider a system with two resources, r1 and r2. Let

Pmax
r1

be the peak power consumption of r1 and let P max
r2

be the peak power consumption of r2.

Definition 1 The value α represents the degree of domi-
nance of r2 over r1 in terms of power, and is given by,

α =
P max

r2

P max

r2
+P max

r1

. (3)

To see the significance of α, let us examine the overall sys-
tem energy,Es,

Es = Er1
+ Er2

, (4)

where Er1
and Er2

is the energy of r1 and r2, respectively.
Es can be re-written as,

Es =
∫ T

0 Pr1
(t)dt +

∫ T

0 Pr2
(t)dt, (5)

Table 1. Alpha value of various CPU/wireless
adapter pairs. r1 is the CPU while r2 is the
wireless adapter [4, 10, 20, 23].

Mobile Processors
Pentium-M ARM Cortex-A8 ARM11 ARM922T ARM996HS

DBT 120 PS 0.01 0.32 0.54 0.75 0.98

HBTC1 0.01 0.52 0.72 0.87 0.99

Aironet 350 0.02 0.53 0.73 0.88 0.99

Orinoco Gold 0.05 0.78 0.89 0.96 1.00

Air Station G54 0.05 0.78 0.90 0.96 1.00

DWL-AG660 0.05 0.80 0.91 0.96 1.00

EW-7317Ug 0.06 0.81 0.91 0.96 1.00
G132_ds 0.08 0.86 0.93 0.97 1.00

DWL-G650M_ds 0.08 0.87 0.94 0.98 1.00

W
ire
le
ss
Ad
ap
te
rs

where T is the system lifetime and Pr1
(t) and Pr2

(t) rep-
resent the instantaneous power of r1 and r2, respectively.
Factoring out the respective peak power gives

Es = P max
r1

∫ T

0
Pr1

(t)
P max

r1

dt + P max
r2

∫ T

0
Pr2

(t)
P max

r2

dt. (6)

Hence, the system peak power consumption,P max
s , is equal

to

Pmax
s = P max

r1
+ P max

r2
. (7)

Substituting (7) into (6) gives

Es = (P max
s − P

max
r2

)
R

T

0

Pr1
(t)

P max

r1

dt (8)

+P max
r2

∫ T

0
Pr2

(t)
P max

r2

dt.

Finally, factoring out the maximum system energy yields

Es = P max
s

[

(1 − α)
∫ T

0
Pr1

(t)
P max

r1

dt + α
∫ T

0
Pr2

(t)
P max

r2

dt
]

. (9)

Equation (9) captures quantitatively the impact of the en-
ergy consumption of each resource on the overall system
energy. It also sheds light on how to balance the energy
demands of different resources. Based on Definition 1, Ta-
ble 1 gives a range of possible α values from combinations
of mobile processor cores and wireless network adapters.
As one might expect, combinations exist that produce many
varying α values.
To see what factors may impact our selection between

MCPU and MNET, we examine the example task set from
Figure 2 in more detail. Figure 3 shows the relative en-
ergy consumption of executing this task using MCPU and
MNET as α value varies. Clearly, MCPU performs better
for smaller α and MNET is better for larger α. Since α is a
hardware dependent parameter, it seems that one could eas-
ily select either MNET or MCPU when the system compo-
nents are determined. However, such a simplistic approach
could lead to quite undesirable results.
The choice of which algorithm to use also depends

largely on the timing parameters in the task set including
periods, deadlines and actual execution cycles. Examining
Figure 3 more carefully, one can see that the two sets of

5

!"!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"! !"# !"$!"% !"& !"' !"(!") !"* !"+ #"!
!

,
-
./
0
12
3
4
5
67
8
4
.9
:

;,7<=)>#$?

;,7<=#>#!?

;@AB=)>#$?

;@AB=#>#!?

Figure 3. The normalized energy of the task
set from Figure 2, with a CPU utilization of
7/12 (solid lines) and 1/10 (dashed lines). The
vertical lines indicate the intersection point
of each set.

lines corresponding to two different CPU utilization values
(due to varying execution cycles) of the same task set in-
tersect at two different α values. In this case, the choice
between MCPU and MNET could be reversed if the system
α is anywhere in the range [0.27, 0.63]. Therefore, to de-
termine whether to use TAS or LLE, significant amount of
off-line analysis is required.
We give a simple off-line approach below which consid-

ers both the α value and the average utilization of a system.

1. Estimate the energy consumption of MCPU and
MNET on the target system (CPU model, network
model and task set), assuming that each task/packet
requires its average case execution cycles/transmission
time.

2. Select the algorithm that consumes less energy.

This straightforward technique, which we refer to as off-line
selection (OLS), will work well in situations where the task
set and system architecture is not expected to change signif-
icantly on-line. It can be implemented in a variety of ways,
including event-driven simulation or system prototyping.

5.1 Hybrid Approach

When significant dynamic changes are expected, we
propose the following technique to balance the conflict-
ing goals of MNET and MCPU. Let Fr1

be the processor
frequency selected by MCPU to minimize the energy con-
sumed by the processor, and Fr2

be the processor frequency
selected byMNET to minimize the energy consumed by the
network interface. To balance the energy consumption be-
tween the two resources, the actual processor frequency is
selected by using α to average the two frequencies, i.e.,

Fused = (1 − α)Fr1
+ (α)Fr2

. (10)

We refer to the frequency selected by using Equation (10)
as HYB. Because HYB averages the frequency selected by
TAS with that selected by LLE, it can be considered a con-
servative selection in that we expect it to do no better than
the best choice, but no worse than the worst choice. The

beauty of this approach is its simplicity and its wide appli-
cability. In the next section, we will evaluate each of the
proposed techniques on a variety of system specifications.

6 Experimental Results

To validate our proposed techniques, we have imple-
mented them in an OS running on a hardware platform. We
have also performed a large number of simulations to in-
vestigate the various behaviors of these techniques. In this
section, we first describe how our techniques were imple-
mented in an actual system as well as sample results. Next,
we discuss results generated through simulation.

6.1 Implementation

By implementing the proposed algorithms in an actual
system, we verified that the frequencies selected during sim-
ulation reflect reality, increased our confidence in the simu-
lated results and highlighted some potential complications.
We chose to implement only TAS and LLE from Section 4,
because OLS selects either TAS or LLE off-line and the hy-
brid algorithm uses a weighted average of the frequencies
selected by both. We felt that this was sufficient from a
frequency-verification standpoint.
The target system was a Gateway 405R0G Laptop run-

ning Linux, kernel version 2.4.19, powered by an Intel Pen-
tium M [20] processor and equipped with an Orinoco Gold,
11 Mbps wireless network card [23]. This configuration
was chosen to validate the extensibility of our proposed
algorithms to common energy constrained computing sys-
tems. OS modifications include the implementation of an
EDF scheduler, the DVFS algorithms and a system monitor-
ing tool that provides the basis for the prediction of future
resource accesses.
Resource Access Monitoring: A kernel module that

tracks all process resource accesses (e.g., I/O activity such
as disk and network reads and writes) has been implemented
to support energy management decisions. The monitored
information includes task invocations, execution times, I/O
operations (including data size, socket or file descriptors,
etc.) and memory accesses. This information is collected
for each task and stored in memory, accessible by our EDF
scheduler or by any task via the /proc interface. To reduce
the resource needs of the monitoring module, the amount of
information stored can be limited, e.g., for a periodic real-
time task, only the history of the most recent hyperperiod
may be of interest. Note that the monitoring tool is an ar-
chitecture independent implementation, i.e., process traces
can easily be obtained for different execution platforms.
Scheduler Implementation: The standard Linux sched-

uler was replaced by an EDF scheduler, where a task with
superuser rights can promote itself or any other task to a
real-time (RT) task by specifying a period and worst-case
execution time. This can be achieved via the /proc virtual
file system provided in Linux. At each scheduler invoca-
tion, the current task set and the resource access activity of
all RT tasks are evaluated (obtained through the resource

6

(a) Normalized CPU Speed vs. Time, LLE (b) Normalized CPU Speed vs. Time, TAS

Figure 4. The normalized speed selected vs. time for a two-task system, with T1 = (p1 = 150ms, wc1 =
96MCycles) and T2 = (p2 = 170ms, wc2 = 120MCycles).

access monitoring tool) to predict future resource accesses
and to appropriately select frequency/voltage levels.
Results: A comparison of the frequencies selected by

the implemented algorithms in our experimental system
with those of the simulation is shown in Figure 4. The
implementation frequencies are found to closely match the
simulation in most cases. However, there do exist a few dif-
ferences in the frequency selections where the implementa-
tion chooses to execute at the next higher frequency. Upon
closer analysis, this difference was found to be directly at-
tributable to the latencies experienced in the invocation of
the scheduler. The scheduler latency, which resulted from
the use of a non-real-time Linux kernel, was found to vary
from 1 to 30 ms. Such latencies in scheduling real-time
tasks ready for their release were found to occur whenever
background tasks essential for the proper functioning of
the operating system (e.g., the swapper process being run
to manage the page cache) were executed. As a result of
such unavoidable latencies, the real time tasks at certain in-
stances were scheduled for execution later than their actual
release times, which in some cases altered the selected fre-
quency.

6.2 Simulations

Having calibrated our simulation with an actual imple-
mentation, we felt more comfortable exploring a variety of
architectures and task sets that would have otherwise not
been possible, due to resource limitations and time con-
straints. Next, we describe the algorithms evaluated, system
parameters and results.
Algorithms: In this section we examine the energy sav-

ings achieved by five algorithms. The first two are the CPU-
centric and network-centric algorithms, LLE and TAS, as
introduced in Section 4. The next two algorithms are the
proposed off-line selection (OLS) and hybrid (HYB) tech-
niques. The last one, called SYS, is the same as LLE, with
the additional limitation that the CPU frequency selected
cannot be less than the system-efficient frequency as defined
in [30]. The system-efficient frequency concept was intro-
duced in an attempt to minimize the system-wide energy
when there are other energy-consuming devices in the sys-
tem in addition to the CPU [30]. With our system model,

there is only one device (i.e., the network card) plus the
CPU and the device is used by every task. Thus, the system-
efficient frequency is set assuming that the network card is
awake during the execution of any task.
Simulation Setup: The experiments were run on 100

randomly generated task sets of 10 tasks each with periods
in the range [1, 200] ms. The worst case execution cycles
were assigned randomly such that a 100% utilization was
reached. For a particular experiment, the worst-case execu-
tion cycles of each task were scaled uniformly to achieve
the desired utilization. The packet size of each task was
assigned in a similar manner.
The processormodel is representative of an ARM11 pro-

cessor core with 32 voltage levels, evenly distributed in
the range [0.8,1.3] V, with corresponding frequencies in
the range [138, 550] MHz and power levels in the range
[34, 250] mW [4]. The network model is representative of
the D-Link Personal Air: Wireless USB Bluetooth Adapter,
DBT-120 [10], with P act

r2
= 190 mW, P sl

r2
= 129 µW and

P lst
r2

= P dn
r2

= P up
r2

= 165 mW. We assume a time over-
head of 50µs to enter the sleep state and a wake-up over-
head of 250µs. The power consumed during shutdown and
wake-up was assumed to be equal to the idle power and the
timeout was set to the break-even time of 300µs. To achieve
a desired α, the relative power consumption of the CPU and
network were scaled according to Definition 1.
Simulation Results: The energy savings of each algo-

rithm was examined when varying the CPU and network
utilization from 0 to 100% and α from 0.1 to 0.9. A snap-
shot of the results with a CPU utilization of 40% and a net-
work utilization of 10% is given in Figure 5. Figure 5(a)
shows the average-case energy savings exhibited by each
algorithm. Below α = 0.45, LLE is the best algorithm
on average, by as much as 15% when compared to TAS.
After α = 0.45, the situation reverses, with TAS outper-
forming LLE by as much as 13%. SYS performs as well
as LLE when the CPU dominates, but quickly saturates to
the equivalent non-DVS system when α = 0.5. The satu-
ration occurs due to the assumption that the network card
must be on whenever a packet-sending task is active. Note
that this assumption is not appropriate when the network
card has its own power-saving timeout mechanism. As ex-
pected, OLS tracks the minimum-energy envelop formed by

7

(a) Normalized Average Energy Consumption (b) LLE

(c) SYS (d) TAS

Figure 5. Normalized energy vs. α with a CPU utilization of 40% and a network utilization of 10%.

TAS and LLE. The energy of HYB closely tracks the bet-
ter of the two algorithms but tends to achieve less energy
savings, on average.
Figures 5(b)–5(d) show the best, average and worst case

energy of LLE, SYS and TAS, respectively, when consider-
ing different CPU utilization. While TAS will, on average,
reduce the system energy by only 13% when the network
dominates, savings up to 22% are not uncommon and 35%
are possible. LLE, on the other hand, is likely to both save
and waste energywhen α is large. As expected, SYS cannot
save network energy (by extending sleep network intervals)
as α increases, because the system-efficient frequency sat-
urates to the maximum processor frequency when the net-
work dominates.
In general, as the CPU utilization increases, the potential

savings when α is small decreases. The same is true for net-
work utilization when α is large. For a small α with a CPU
utilization that is very small (less than 10%), all algorithms
saturate to the same value, due to the lower CPU-frequency
bound. For a very large CPU utilization, task deadline con-
straints prevent the use of DVS, resulting in reduced energy
savings for all algorithms over all α values.
Figure 5(a) seems to suggest that selecting either LLE

or TAS based on α alone is a good idea, but Figures 5(b)
and 5(d) clearly show a high degree of variability in energy
saving potential when the CPU utilization varies. Figure 6
illustrates this variability by showing the percent difference
in energy between LLE and TAS over various mid-range
α values and several CPU utilization values. Specifically,
the vertical axis of Figure 6 represents (E(algorithm) −

E(LLE))/E(LLE), where “algorithm” can be either TAS
or OLS. Although the energy difference, on average, is not
more than 5%, for a particular task set, the penalty for
choosing the wrong algorithm can be greater than 10% (see
the top-most and bottom-most curve), even at the crossing
point of the average case (those points where the average
percent difference is zero).
The average percent difference between OLS and LLE

is also displayed (the dashed line) in Figure 6. Though
not shown explicitly, the minimum for OLS is zero (which
matches those cases where LLE is the best choice) and
the maximum will be equivalent to the maximum of TAS.
Clearly OLS is better than an arbitrary selection of TAS
or LLE when the CPU utilization and task composition is
not expected to change significantly on-line. However, if
the system is more dynamic, it may be better to use a con-
servative approach, such as HYB, rather than face an en-
ergy penalty of up to 16% as indicated by the top-most and
bottom-most curve.
To examine the behavior of HYB, we introduce the

notion of a hit and the hit ratio. We say that a task
set has a hit if the algorithms satisfy Energy(HY B) <
max{Energy(LLE), Energy(TAS)}. The hit ratio is
simply the ratio between the number of task sets which have
a hit and the total number of task sets. For the randomly
generated task sets, the hit ratio data is provided in Fig-
ure 7(a) (the dashed curve).
The significance of the hit ratio is that it indicates the op-

portunities when HYB would save more energy if a wrong
decision is made for the task set. For α ∈ [0.0, 0.2] and

8

Figure 6. The percent difference between TAS
and LLE for various mid-range α and CPU-
utilization values. Error bars show the av-
erage energy savings, ± the standard devi-
ation.

α > 0.9, the hit ratio is 100%. Over mid-range α values,
the hit ratio is no lower than 73%, which occurs when the
CPU utilization and α are both 0.6. The triangle symbol
curve indicates the fraction of tasks that have hits when LLE
is the worst choice, while the diamond symbol curve repre-
sents the fraction of tasks that hit when TAS is the worst
choice. Obviously, for those α values where either LLE or
TAS is never wrong, the algorithm selection is clear, even if
the utilization and task set vary. However, forα ∈ [0.4, 0.6],
the odds are good that a wrong decision will be made, which
makes HYB a better choice. Figure 7(b) shows the hit bene-
fit and miss penalty associated with HYB for various α and
CPU utilization combinations. Here, a benefit or penalty
is equal to the percent difference between Energy(HY B)
and max{Energy(LLE), Energy(TAS)}. From Fig-
ure 7(a) and 7(b) we can see that not only is the penalty
less than the benefit in most cases (comparing the magni-
tudes of the curves below 0 and those above zero), but a hit
is more likely in all cases.

7 Conclusions and Future Work

Contrary to existing work on system-wide energy opti-
mization, we have demonstrated that it is indeed possible to
save energy using DVFS, even when the CPU is not the
dominant consumer of energy. Specifically, when a sec-
ondary device employs an independent DPM strategy to
minimize energy locally, DVFS can be applied to both mini-
mize CPU energy and shape the traffic of requests to the sec-
ondary device such that sleep intervals are maximized. This
is particularly true when requests to the DPM resource are
collected into a small number of bursts within each task in-
stance (as is typically the case with network accesses) rather
than being distributed evenly throughout the task. Similar
results could also be applied to disk and memory accesses
if caching / prefetching is used effectively.
Based on the observation above, we developed a

network-centric algorithm called Timeout Aware Scheduler
(TAS) that achieves energy savings of up to 35% when the
network-interface energy dominates that of the CPU. When

coupled with a representative CPU-centric algorithm and
off-line selection, a network-aware DVFS policy that can
balance the CPU and network energy is produced. When the
system is highly dynamic and it is not clear off-line which
algorithm to choose, our proposed hybrid approach offers a
conservative alternative to off-line selection.
The presented work is based on a number of assumptions

which will be relaxed in our future work. Most notably,
our work has focused on transmitting packets while ignor-
ing any incoming data. TAS will be extended to adapt its
prediction of future network transmissions and timeouts to
consider incoming traffic as well. TAS will consider the be-
havior of the Distributed Coordination Function (DCF) of
the 802.11 protocol to ‘align’ network transmissions such
that they occur when the network card is already awake to
receive data from the base station.
Although the on-line hybrid algorithm is, on average,

more efficient in terms of energy consumption than select-
ing either MNET or MCPU statically, more variables need
to be considered. This includes CPU utilization, Network
utilization and variable packet release times (i.e., other than
at the completion of a job).
Finally, in this paper, the CPU was the ‘manageable’ re-

source and the network was a passive resource, i.e., the pre-
sented algorithms only monitor the behavior of the network
card, but do not control it. Our future work will extend the
TAS approach to an algorithm that actively modifies net-
work parameters such as timeout values.

References

[1] A. Acquaviva, T. Simunic, S. Roy, and V. Deolalikar. Remote
power control of wireless network interfaces. In Proceedings
of the International Workshop on Power and Timing Model-
ing, Optimization, and Simulation, pages 369–378, Septem-
ber 2003.

[2] M. Anand, E. B. Nightingale, and J. Flinn. Self-tuning wire-
less network power management. In Proceedings of the 9th
annual international conference on Mobile computing and
networking, pages 176–189, September 2003.

[3] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. M. Al-
Hashimi. Overhead-conscious voltage selection for dynamic
and leakage energy reduction of time-constrained systems. In
Proceedings of the conference on Design, automation and test
in Europe (DATE), 2004.

[4] ARM CPU Cores. http://www.arm.com/.
[5] L. Benini, A. Bogliolo, and G. D. Micheli. A survey of
design techniques for system-level dynamic power manage-
ment. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 8(3):299–316, jun 2000.

[6] A. Boulis and M. Srivastava. Node-level energy management
for sensor networks in the presence of multiple applications.
Wireless Networks, 10(6):737–746, nov 2004.

[7] K. W. Cameron, R. Ge, and X. Feng. High-performance,
power-aware distributed computing for scientific applications.
IEEE Computer, 38(11):40–47, nov 2005.

[8] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo. In Leakage-aware en-
ergy efficient scheduling of real-time tasks, pages 408–417,
2006.

9

(a) Hit ratio of HYB (b) Hit benefit and miss penalty of HYB.

Figure 7. Hit ratio and benefit / penalty measurements of the hybrid algorithm. In 7(a), the dashed
line represents the HYB hit ratio, while the two solid curves represent the percentage of task sets
where a hit occurs and either LLE is the worst choice or TAS is the worst choice. In 7(b), the hit
benefit is the percentage of energy saved by a hit, while the miss penalty is the percentage of energy
wasted by a miss.

[9] J.-J. Chen and T.-W. Kuo. Multiprocessor energy-efficient
scheduling for real-time tasks with different power character-
istics. Int’l Conf. on Parallel Processing, 2005.

[10] D-LinkWireless Adapters. online- http://www.dlink.
com.

[11] E. J. Kim, G. M. Link, K. H. Yum, N. Vijaykrishnan,
M. Kandemir, M. J. Irwin, and C. R. Das. A holistic approach
to designing energy-efficient cluster interconnects. IEEE
Transactions on Computers, 54(6):660–671, june 2005.

[12] W. Kim, D. Shin, H.-S. Yun, J. Kim, and S. L. Min. Perfor-
mance comparison of dynamic voltage scaling algorithms for
hard real-time systems. In Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), pages 219–228,
2002.

[13] R. Kravets and P. Krishnan. Power management techniques
for mobile communications. In In Proceedings of the 4th
Conference on Mobile Computing and Networking MOBI-
COM’98, oct 1998.

[14] C.-Y. T. L. Leung and X. Hu. Exploiting dynamic workload
variation in low energy preemptive task scheduling. In De-
sign Automation and Test in Europe (DATE), pages 634–639,
2005.

[15] Y.-H. Lu and G. D. Micheli. Comparing system-level power
management policies. IEEE Design & Test of Computers,
18(2):10–19, mar 2001.

[16] B. Mochocki, X. S. Hu, and G. Quan. A realistic variable
voltage scheduling model for real-time applications. In Pro-
ceedings of the 2002 IEEE/ACM international conference on
Computer-Aided design (ICCAD), pages 726–731, nov 2002.

[17] B. C. Mochocki, X. S. Hu, and G. Quan. Practical on-line
dvs scheduling for fixed-priority real-time systems. In Pro-
ceedings of the IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), March 2005.

[18] S. PalChaudhuri and D. B. Johnson. Power mode scheduling
for ad hoc networks. In Proceedings of the International Con-
ference on Network Protocols (ICNP 2002), pages 192–193,
November 2002.

[19] A. E. Papathanasiou and M. L. Scott. Energy Efficiency
through Burstiness. In Proc. of the 5th IEEE Workshop on
Mobile Computing Systems and Applications, October 2003.

[20] Intel Pentium M Processor Datasheet. http:
//download.intel.com/design/mobile/
datashts/25261203.pdf.

[21] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling
for low-power embedded operating systems. In Proceedings
of the eighteenth ACM symposium on Operating systems prin-
ciples (SOSP), pages 89–102, 2001.

[22] C. Poellabauer and K. Schwan. Energy-aware traffic shap-
ing for wireless real-time applications. In Proceedings of the
IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 48–55, may 2004.

[23] ORiNOCO Classic Gold PC Card. online- http:
//www.handhelds.org/Compaq/iPAQH3600/
iPAQ_H3600.html.

[24] D. Qiao, S. Choi, A. Jain, and K. G. Shin. MiSer: An Opti-
mal Low-Energy Transmission Strategy for IEEE 802.11a/h.
In Proc. of the ACM/IEEE Intl. Conference on Mobile Com-
puting and Networking, September 2003.

[25] G. Quan and X. S. Hu. Minimum energy fixed priority
scheduling for variable voltage processors. IEEE Trans. on
ICCAD, 22(8), August 2003.

[26] V. Raghunathan, S. Ganeriwal, C. Schurgers, and M. Srivas-
tava. E2WFQ: An Energy Efficient Fair Scheduling Policy for
Wireless Systems. In Proc. of the Intl. Symposium on Low-
Power Electronics and Design, August 2002.

[27] E. Uysal-Biyikoglu, B. Prabhakar, and A. E. Gamal. Energy-
efficient packet transmission over a wireless link. IEEE
Transactions on Networking, 10(4):487–499, aug 2002.

[28] F. Yao, A. Demers, and S. Shenker. A scheduling model
for reduced cpu energy. In Proceedings of the 36th Annual
Symposium on the Foundations of Computer Science (FOCS),
pages 374–382, oct 1995.

[29] D. Zhu, N. AbouGhazaleh, D. Mossé, and R. Melhem.
Power aware scheduling for and/or graphs in multi-processor
real-time systems. In Proceedings of the 2002 International
Conference on Parallel Processing (ICPP’02), page 593,
2002.

[30] J. Zhuo and C. Chakrabarti. System-level energy-efficient
dynamic task scheduling. In Proceedings of the 2005 Design
Automation Conference (DAC), pages 628–631, jun 2005.

10

