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ABSTRACT
The shift from uniprocessor to multi-core architectures has
made it more difficult to design predictable hard real-time
systems (HRTS) and achieving high processor utilization re-
mains a major challenge. As energy efficiency becomes an
important design metric in HRTS, most systems use dy-
namic voltage and frequency scaling (DVFS) to reduce dy-
namic power consumption when the system is underloaded.
However, for many multi-core systems, DVFS is implemented
using voltage and frequency islands (VFI), implying that in-
dividual cores cannot independently select their voltage and
frequency (v/f) pairs, which results in less energy savings
when existing energy-aware task assignment and scheduling
techniques are used. In this work, we present an analy-
sis of the increase in energy consumption in the presence
of VFI. Further, we propose a semi-partitioned approach
called EDF-hv to reduce the energy consumption of HRTS
on multi-core systems with VFI. Simulation results revealed
that when workload imbalance among the cores is suffi-
ciently high, EDF-hv can reduce system energy consumption
by 15.9% on average.
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1. INTRODUCTION
Most modern multi-core processors employ some types of

power management (PM) schemes to improve energy effi-
ciency. Typically, PM is broadly broken into static (or leak-
age) and dynamic components, where power-gating is used
to reduce static power and dynamic voltage and frequency
scaling (DVFS) is used to reduce dynamic power [16, 11].
However, due to shrinking technology nodes, increased clock
speeds, and an increase in the number of processing cores,
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providing an independent power supply and clock to each
core in the multi-core to implement PM in hardware has
become increasingly difficult to realize. To overcome this
challenge, most modern multi-core processors are built us-
ing voltage and frequency islands (VFI) [8, 12, 17], which
distribute a single voltage (i.e., power) and frequency (i.e.,
clock) to a group of cores on the multi-core. Although VFI
simplifies implementation, it also restricts the effectiveness
of the underlying PM schemes as each core cannot set its own
voltage or frequency independently of the VFI, i.e., each core
must operate at the voltage and frequency (v/f) pair of the
VFI [20].

To make matters worse, for hard real-time systems (HRTS)
where deadlines cannot be violated, each VFI must accom-
modate the needs of the core with the highest demand; which
can lead to a less than optimal PM solution. For example,
consider the system shown in Figure 1. The system has six-
teen cores grouped onto four VFI (i.e., each VFI has four
cores). Suppose the workload can be scheduled in such a way
that deadlines can be guaranteed by using the full capacity
of six cores (i.e., six core must operate at maximum capacity
to execute the workload on time). Since static power now
dominates total power consumption [20], in general, the op-
timal static PM solution is to only have six operating cores
and power-gate the remaining ten. Yet, due to the restric-
tions imposed by VFI, the system cannot attain this optimal
solution as only four or eight cores can be power-gated while
having at least six operating cores available. Thus, the lim-
itations of VFI prevent the actual implementation of the
optimal static power solution.

In addition, the presence of VFI also imposes limitations
on DVFS for managing dynamic power. As mentioned, for
HRTS, the VFI must accommodate the needs of the core
with the highest demand. This means that if one core re-
quires a v/f pair above that of the other cores on the same
VFI, then all the cores on the VFI must operate at the
increased v/f pair. Hence, the system not only pays the in-
creased dynamic cost for the core that needs the increased
v/f pair, but also the increased dynamic cost for all other
cores on the same VFI. This increased dynamic power cost
due to cores operating above their optimal v/f pair is re-
ferred to herein as the VFI cost.

One possible solution to improve the dynamic power cost
is to distribute the workload evenly across the operating
cores, a principle referred to herein as load-balancing. If all
the cores have the same workload, then typically all the cores
will need approximately the same v/f pair (subject to pro-
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Figure 1: Example of the limitations imposed by
VFI on static power. When only six cores are
needed, two VFI must be switched-on and the other
two VFI can be power-gated (i.e., switched-off).
However, this leaves the system with eight operating
cores consuming energy.

cess variation) and thus the VFI cost is minimized. Consider
again the system in Figure 1. Since a minimum of eight cores
must be turned on for the workload to meet their deadlines,
even though only six cores are needed, using all eight cores
is more energy efficient. When the workload is scheduled on
only six of the eight operating cores, then at least two cores
on each VFI will need to operate at full capacity; thus both
VFI must operate at the maximum v/f pair. Conversely,
load-balancing the workload on all eight cores allows the v/f
pair of both VFI to be reduced by 25% and still meet dead-
lines. Therefore, load-balancing the workload on all eight
cores has the potential to reduce dynamic power cost by up
to 58% (assuming a CMOS circuit where the dynamic power
is proportional to the cube of the clock frequency).

Unfortunately, achieving a load-balance that is suitable
for HRTS is not always possible. Typically, to be able to
guarantee deadlines, partitioned scheduling is used. In par-
titioned scheduling, the workload is partitioned into shares
such that each share is assigned to its own core and then
each core only executes the share of the workload it was
assigned. Although in some cases it is possible for the work-
load to be broken into equal shares, the more typical case
is that each core is assigned different sized share and thus
the workload is imbalanced. As such, we propose Earliest
Deadline First for HRTS with VFI (EDF-hv), which utilizes
a semi-partitioned approach to achieve a load-balance and
thereby improves energy efficiency in the presence of VFI.
The main contributions of this work are as follows.

• To the best of our knowledge, this is the first work
to quantify the energy implications of VFI in HRTS.
Herein, we define the concepts of imbalance and VFI
cost and derive the best- and worst-case bounds on
said VFI cost.

• Simulation results pertaining to VFI cost, approximat-
ing the average behavior, are shown with its correlation
to system imbalance.

• A scheduling algorithm, namely EDF-hv, which is suit-
able for HRTS, is presented to improve the energy ef-
ficiency of the system in the presence of VFI.

• Finally, simulation results that allow the performance
of EDF-hv to be assessed are presented and a classi-
fication of the types of systems that will benefit from
EDF-hv are described.

The rest of this paper is organized as follows. In Section 2,
the related work is presented. Section 3 provides the system
model. The imbalance and VFI cost are described in Section
4. To mitigate the effects of VFI cost, we introduce EDF-hv
in Section 5. Section 6 presents simulation results pertaining
to the increase in energy efficiency as obtained by EDF-hv.
Section 7 concludes this paper and presents future research
directions.

2. RELATED WORK
The work in [6] categorizes multi-core real-time schedul-

ing algorithms as global, partitioned, or a hybrid of the
two. These scheduling algorithms are classified based on the
amount of task migration that is allowed among the cores.
Partitioned scheduling prohibits migration and, conversely,
global scheduling permits unrestricted migration. Further,
[6] calculates how much of the system’s total capacity the
task set can require while still guaranteeing a feasible sched-
ule. Partitioned scheduling minimizes scheduling overhead,
as there is no task migration, and once tasks have been as-
signed to cores, deadlines can be guaranteed using the Ear-
liest Deadline First (EDF) [15] scheduling algorithm. How-
ever, if the task set will use more than approximately 50% of
the total capacity of a system, the task set is not guaranteed
to be schedulable [6]. On the other hand, global scheduling
algorithms, such as proportionate fairness (p-fair) [7], can
schedule up to 100% of the systems capacity; however, the
scheduling overhead is so large that these algorithms are not
practical in reality.

In an attempt to combine the best of partitioned and
global scheduling, a hybrid approach to scheduling that al-
lows restricted task migration has been developed [3, 1, 2,
14, 10] and is typically referred to as semi-partitioning. In
semi-partitioning, limited task migration is permitted for
specific tasks while other tasks are only allowed to execute
on their assigned core. In this work, we leverage the semi-
partitioning heuristics proposed by Anderson et. al. in [1,
2]. The work in [1] presents EDF-fm, a semi-partitioning al-
gorithm that guarantees feasibility up to 100% of the system
capacity with the restriction that no single task can have a
utilization greater than 50% of a single core. In [2], EDF-fm
was extended to EDF-os, which removes the per task uti-
lization requirements, i.e., tasks can have a utilization up
to 100% of a single core. Neither of these semi-partitioning
heuristics can guarantee deadlines; however, both have a
bound on how late the tasks can be, referred to as bounded
tardiness. Further, in both EDF-fm and EDF-os, to reduce
migration overhead, a migrating task can only migrate from
one core to another after a job/iteration of the task has fully
completed, a property referred to as boundary-limited.

EDF-os [2] is designed for periodic tasks on a homoge-
neous multi-core system. As a semi-partitioning algorithm,
task are either fixed (i.e., the task is assigned to execute on
only one core) or migrating (i.e., the task is assigned to ex-
ecute a defined share of jobs on a subset of the cores). In
EDF-os, tasks are partitioned in two steps. In the first step,
as many tasks as possible are assigned to one of the cores as
fixed tasks using the worst-fit decreasing (WFD) heuristic



[9]. When a task is encountered that cannot be assigned to a
core using WFD, the second part of the partition begins. In
the second step, using a next-fit-like heuristic, the remaining
tasks are assigned a share on cores that still have available
capacity until the complete utilization of the task is allotted.
Under EDF-os, a migrating task can execute on more than
two cores; however, each core is limited to a maximum of
two migrating tasks. After the tasks have been partitioned,
the migrating tasks will execute the defined share of jobs
on each of its cores and migration is determined with a p-
fair algorithm [7]. Fixed tasks are prioritized using EDF
while migrating tasks have fixed priority over fixed tasks.
Additionally, on cores that have two migrating tasks, one
migrating task has a fixed priority over the other. Due to
the method in which tasks are assigned to the cores, Ander-
son et al. were able to derive tardiness bounds for the tasks
[2].

3. SYSTEM MODEL
We consider a periodic task set, η = {τ1, τ2, ..., τN}, of

N independent tasks to be scheduled on a homogeneous
multi-core system with M identical processing cores, P =
{p1, p1, ..., pM}, on a set of I VFI, Γ = {γ1, γ2, ..., γI}, where
N, M, and I are positive integers. The system must have at
least one VFI and, since the system is homogeneous, each
VFI, γl, must have the same number of cores on it. For ease
of discussion, Pl is the set of cores on γl and Ml is the number
of cores in Pl. Further, since this work considers multi-core
systems with multiple cores per VFI, M ≥ Ml > 1.

Each VFI can adjust its voltage independently of the other
VFI to operate at a set of K discrete frequencies, λ =
{f1, f2, ..., fK} such that f1 < f2 < ... < fK, where f1 is the
minimum/slowest frequency and fK is the maximum/fastest
frequency. For the sake of clarity, scheduling is described in
terms of quanta of execution, where each quantum is the
number of clock cycles sufficient to yield a reasonable unit
of execution for scheduling (While the proper selection of
a quantum size is an important aspect of scheduling, it is
out of the scope of this work.). As such, each frequency, fk,
represents the number of quanta per second.

When a VFI is operating at frequency fk, each core on
the VFI has a corresponding total power consumption of
wk. As such, there is a set of K power consumption levels
W = {w1, w2, ..., wK}, referred to herein as power states,
that correspond with the set of frequencies in λ and 0 <
w1 < w2 < ... < wK. Note that we implicitly assume that
a core is not permitted to operate at a frequency where
leakage power dominates dynamic power. This assumption
is realistic for many modern processors or can be applied by
analysis [13].

Each task, τi, is defined by a worst-case execution time
(WCET), Ci, a period, Ti, a relative deadline, Di, a utiliza-
tion, ui, and a profile of execution, xi. The WCET is the
absolute maximum number of quanta required for the task
to complete and includes scheduling overhead due to context
switches, etc. In this way, the WCET is a fixed amount of
work with a variable execution time based on the frequency
of the core that it is being executed on. The period is the
time, in seconds, for how often the task must execute. The
deadlines of each task for this work are implicit, i.e., Ti = Di;
the task must complete before the start of the next period.
The utilization, ui, is the share of a core’s utilization that
the task must be allotted in order to meet its deadline and

can be calculated by:

ui =
Ci

fK · Ti
. (1)

Note that the utilization is calculated assuming the the max-
imum frequency, fK.

The utilization of each task is restricted to 0 < ui ≤ 1 ,
i.e., a task must require a positive non-zero utilization, but
no single task can require more that the total capacity of a
single core. The profile of execution follows the probabilistic
model proposed in [21] such that xi, is a set of Xi potential
execution times, cα, with their probability of occurrence, ρα.
As such, xi = {(ρ1, c1), (ρ2, c2), ..., (ρXi , cXi)}, Xi > 0, and
c1 < c2 < ... < cXi = Ci. Also,

Xi∑
α=1

ρα = 1. (2)

Additionally, tasks in the task set are sorted by utilization
such that:

u1 ≥ u2 ≥ ... ≥ uN. (3)

Since the task set, η, will be scheduled on the set of cores,
P , the system utilization, U, is the sum of the utilization of
the tasks and can be calculated as:

U =

N∑
i=1

ui. (4)

In order to guarantee deadlines with EDF, the cores cannot
be overloaded. Hence, U ≤ M is a necessary condition for
schedulability.

During partitioning, the tasks are partitioned to the cores
such that the task set, η, is divided into task subsets where
each subset ηj is assigned to core pj . However, following the
EDF-os [2] semi-partitioning heuristic, each task is assigned
a share, si,j , on each core such that:

M∑
j=1

si,j = ui. (5)

Note that shares can be zero and some tasks may have only
one non-zero share. Such tasks are referred to as fixed tasks.
Conversely, tasks that have a non-zero share on more than
one core are considered migrating tasks. As mentioned, mi-
grations are boundary limited and determined by p-fair [7].
Thus, all jobs of a fixed task will execute on a single core, i.e.,
the fixed task do not migrate, while the jobs of a migrating
task will migrate between cores with a non-zero share such
that the number of jobs executed on each core is equal to
the share assigned to that core. Therefore, the average uti-
lization of each core Uj , is:

Uj =

N∑
i=1

si,j . (6)

For ease of discussion, ηj is the subset of tasks with a non-
zero share on pj , and Nj is the number of tasks in ηj .

4. IMBALANCE AND VFI COST
We now consider the imbalance and the VFI cost. As has

been mentioned previously, imbalance occurs in pure parti-
tioning heuristics when some cores in a multi-core system
are assigned a greater workload than others. VFI cost is



the increase in energy consumption that occurs when one or
more cores on a VFI operate at a v/f pair above that which
is necessary to guarantee deadlines because another core on
the VFI needs the increased v/f pair to guarantee deadlines.
In this section, we will formally define the imbalance and the
VFI cost as well as present a best- and worst-case analysis
of the VFI cost. We will conclude this section by showing
simulation results approximating the average-case behavior
of VFI cost and demonstrate the correlation between imbal-
ance and VFI cost.

4.1 Imbalance
To achieve an ideal load-balance on the system, each core

should be assigned the same utilization. The load-balanced
utilization, Φ, that each core needs to be assigned can be
calculated by:

Φ =
U

M
. (7)

Unfortunately, since the utilization of a task can be any value
which is greater than zero but less than or equal to one, there
is no guarantee that the tasks can be partitioned in such a
way as to achieve a load-balance. Further, while the WFD
heuristic does approach a load-balanced partition, and thus
is often used for energy-efficiency, it is not guaranteed to
find a load-balanced solution, even if one exists. Formally,
the imbalance, φ, is the ratio by which the utilization of the
cores differs from the ideal load-balance:

φ =

∑M
j=1

|Φ−Uj |
Φ

M
=

∑M
j=1 |Φ− Uj |

U
. (8)

4.2 VFI Cost
The VFI cost is the ratio of energy consumed as a result

of one or more cores operating at a v/f pair that is higher
than is necessary to the total energy. (Recall the VFI must
operate at the highest v/f pair required by any of the cores
on it.) More formally, for a period of T quanta, [0,T), on
a given VFI, γl, for each quantum, t, each core in Pl will
calculate an optimal operating frequency using some DVFS-
based scheduling algorithm. Next, γl will set its frequency
to the maximum of the frequencies calculated by the cores
in Pl. Let the optimal frequency, fo, calculated by each core
at quantum t be denoted by fo(j, t), with the corresponding
power state given by wo(j, t). In addition, let the frequency
set by γl be fVFI(l, t), with the corresponding power state
given by wVFI(l, t). The VFI cost, Ψ, for a single VFI for a
single quantum, denoted as Ψl(t), can be calculated as:

Ψl(t) =

∑
∀pj∈Pl

[wVFI(l, t)− wo(j, t)]
Ml · wVFI(l, t)

. (9)

Since the VFI cost of the system is simply the average of all
VFI in the system over all of the quanta, the total system
VFI cost can be calculated by:

Ψ = (I · T)−1
I∑
l=1

T−1∑
t=0

∑
∀pj∈Pl

[wVFI(l, t)− wo(j, t)]
Ml · wVFI(l, t)

. (10)

Now, since the value of wVFI(l, t) and wo(j, t) for any value
of t are in the power state set W and wVFI(l, t) ≥ wo(j, t),
then: wVFI(l, t) > wVFI(l, t)− wo(j, t). Thus,

Ml · wVFI(l, t) >
∑
∀pj∈Pl

[wVFI(l, t)− wo(j, t)]. (11)
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Figure 2: The maximum VFI cost (Equation 13)
as a function of the number of cores (M) by the
minimum frequency (f1) that the VFI can reduce
to (as a percentage of the maximum frequency, fK)
assuming a pure CMOS circuit (i.e., wk ∝ f3

k).

As a result, the VFI cost is strictly less than one. Addition-
ally, from Equation 10, it is possible to determine worst- and
best-case VFI cost, as described next.

4.2.1 Worst-Case VFI Cost
The maximum VFI cost will occur when the difference

between the set VFI power state wVFI(l, t) and the cores
power state wo(j, t) is largest for all of the cores on the VFI
for all quanta. The maximum possible value of wVFI(l, t)
is wK, and the minimum possible value of wo(j, t) is w1,
however, wVFI(l, t) can only be wK if the value of wo(j, t) =
wK for at least one core on the VFI. Thus, the maximum
VFI cost for a single VFI at a single quantum t, denoted
as Ψlmax(t), will occur when wo(j, t) = wK for only one
core and wo(j, t) = w1 for all other cores. Therefore, the
maximum VFI cost for a single quantum is:

Ψlmax(t) =

∑Ml−1
j=1 [wK − w1]

Ml · wK
=

(Ml − 1)(wK − w1)

Ml · wK

Ψlmax(t) = 1− wK + (Ml − 1)w1

Ml · wK
. (12)

It follows then that the maximum VFI cost of the system,
Ψmax, will be achieved when all of the VFI experience the
maximum VFI cost for each quantum in the considered time
interval, i.e. [0,T). Therefore, substituting Equation 12 into
Equation 10 produces:

Ψmax = (I · T)−1
I∑
l=1

T−1∑
t=0

(
1− wK + (Ml − 1)w1

Ml · wK

)

Ψmax = (I · T)−1

(
1− wK + (Ml − 1)w1

Ml · wK

) I∑
l=1

T−1∑
t=0

1

Ψmax = 1− wK + (Ml − 1)w1

MlwK
. (13)

Thus, the maximum VFI cost of the system is the same as
the maximum VFI cost of a single quantum. The maximum
VFI cost is shown in Figure 2 for two to eight cores per VFI,



assuming a pure CMOS circuit, i.e., wk ∝ f3
k , for systems

that can reduce the frequency from 95% of the maximum to
50% of the maximum.

4.2.2 Best-Case VFI Cost
Conversely, to achieve the minimum VFI cost, Ψmin, the

difference between wVFI(l, t) and wo(j, t) must be minimized
for all of the cores on each VFI for all quanta. This will occur
when wVFI(l, t) = wo(j, t). Thus, from Equation 10, when
wVFI(l, t) = wo(j, t), the VFI cost is zero. Therefore, it is
possible for there to be no VFI cost regardless of whether
the system is operating at its maximum, minimum, or any
other power state.

4.3 Simulation Results
While we have described the best- and worst-case VFI

cost, the best- and worst-case scenarios rarely occur in prac-
tice. Hence, we performed simulations of randomly gener-
ated task sets for several different utilizations to assess the
average VFI cost. We will explain our simulation setup first
and then show the simulation results of the average-case be-
havior and demonstrate the correlation between VFI cost
and imbalance.

4.3.1 Simulation Setup
To minimize biasing in the randomly generated task sets,

a slightly modified version of the UUniFast algorithm in [5]
was used. Since the UUniFast algorithm assumes a single
core system, it needed to be modified so that the target
utilization can exceed 100% while restricting the individual
task utilization to 100%. Due to this modification, the UU-
niFast algorithm occasionally failed to produce a valid task
set. When this situation arose, the task set was discarded,
and a new task set was randomly generated. In addition,
not every valid task set can be partitioned unless the sys-
tem utilization is less than approximately 50% [6]. If a task
set was encountered that could not be partitioned, the task
set was also discarded and another task set was generated
randomly.

The maximum allowable period for a task was set to 100
quanta with a minimum allowable period of 5 quanta. Addi-
tionally, each task was required to have a minimum WCET
of one quantum. For implementation purposes, the system
utilization was allowed to deviate from the desired utiliza-
tion by up to 1%. An execution profile was then generated
for each task with a random number of probability and ex-
ecution time entries (see Section 3). The probabilities for
each execution profile were generated using the original UU-
niFast algorithm. The potential execution times were simi-
larly generated using a modified version of UUniFast where,
for each iteration, the actual execution time was taken as
some percentage of the WCET.

In addition to generating tasks, we also generated the
available VFI frequencies and corresponding power states.
Since the VFI cost is a ratio between the power states, the
values of the frequencies and power states themselves are
not as important as the ratio between the frequencies and
power states. For this set of simulations, cores in a VFI
could reduce their frequency to up to 70% of the maximum
frequency at 5% granularity. The corresponding power was
calculated as wk ∝ f3

k (we assume leakage current is con-
stant and thus the power states reflect the dynamic power
cost).

For a given number of tasks, number of cores per VFI, and
system utilization, 20 task sets were randomly generated.
Since each task has a random execution profile, the task
sets were simulated three times to obtain meaningful data.
Thus, the VFI cost for the given number of tasks, number
of cores per VFI, and system utilization is the average of
the VFI cost of all 60 simulations, i.e., 20 task sets each
simulated 3 times.

Simulations were run for systems configured with two,
four, and eight cores per VFI. Each set of simulations only
considered one VFI per system, since, as shown in Equation
10, the VFI cost of a system is simply the average of the
VFI cost of each VFI. Thus, since the simulation is already
the average of multiple simulations, the results of M cores
on a single VFI are representative of kM cores on k VFIs.
Further, to be able to compare the results of the VFI with
two, four, and eight cores per VFI, values of N were selected
such that the average number of tasks per core, i.e, N

M
, var-

ied from 1.5 to 5 (at intervals of 0.5). Finally, task sets
with total utilization between 40% and 90% (at intervals of
10%) were considered. The minimum utilization of 40% was
selected since each core can reduce its frequency to 70%,
implying that, for a total utilization at or below 30%, the
VFI cost is negligible. Conversely, the maximum utilization
was set at 90% since partitioning task set with a 100% total
utilization is only feasible in rare cases. Once partitioned,
tasks are scheduled with EDF and the frequency for each
core is calculated using the Look-Ahead Dynamic Voltage
Scaling (LADVS) algorithm [19].

4.3.2 Results
The combined average VFI cost and imbalance for VFI

configurations of two, four, and eight cores per VFI are
shown in Figure 3 (the individual results for each configura-
tion are omitted due to space constraints but are available
in [18]). Since these graphs are produced from a set of ran-
domly generated data, they do not represent exact values,
but can be used to establish general trends. As shown in
the graphs, as the utilization increases, the VFI cost also in-
creases. In addition, as the average number of tasks per core
increases, both the imbalance and VFI cost are reduced.

Another trend shown in Figure 3 is that the VFI cost
increases as the number of cores per VFI increases. This
behavior follows the mathematical model in Equation 12.
The mathematical limit for two, four, and eight cores per
VFI are 33.3%, 50.0%, and 58.3%, respectively. The maxi-
mum simulated VFI cost for each configuration are 23.9%,
37.3%, and 48.6%, respectively. While the simulated maxi-
mum VFI cost for all three VFI configurations occurred at
a high utilization with a low average number of tasks per
core, the simulated results attained an average of 76.6% of
the mathematical limit with the configurations with more
cores per VFI being closer to the mathematical limit in all
three cases. Further, the maximum simulated VFI cost for
all three configurations occurred when the imbalance was at
its highest for the given utilization.

As shown in Figure 3, as the average number of tasks per
core increases, the imbalance decreases. For the lower aver-
age number of tasks per core, as the utilization increases, the
imbalance decreases. This is expected since as the utiliza-
tion increases, the probability that the task set is not able to
be partitioned also increases. Since any randomly generated
task set that could not be partitioned was not considered in
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Figure 3: Combined average VFI cost (top) and
imbalance (bottom) (i.e., combined average of two,
four, and eight cores per VFI), as a function of the
average number of tasks per core (i.e., N/M) and
system utilization.

this work, the amount of imbalance decreases as necessary
to be feasible for partitioning.

The final important trend shown in Figure 3 is that al-
though the VFI cost is clearly dominated by system uti-
lization, there is a strong correlation between the VFI cost
and imbalance. The average correlation of the reduction in
imbalance to VFI cost for the different system utilizations
across all three VFI configurations was nearly one to one.
As such, although the VFI cost is primarily influenced by
the utilization, our data suggests that it is also correlated
to imbalance and thus can be partially mitigated by load-
balancing the system.

5. EDF-HV
EDF-hv modifies the partitioning process of EDF-os to

load-balance a system instead of guaranteeing feasibility up
to 100% of the system’s capacity. With this modification,
EDF-hv then extends the scheduling procedure of EDF-os to
guarantee deadlines instead of providing tardiness bounds.
In this section, we first present the partitioning process of
EDF-hv. We then describe the modifications to the task
scheduling process. We end this section with some impor-
tant properties of EDF-hv and provide a proof that EDF-hv
can guarantee hard real-time deadlines.

5.1 Partitioning for a Load-Balance
EDF-hv follows the partitioning process of EDF-os with

two main modifications in order to achieve a load-balance.
First, we restrict the available capacity of each core to be
no more than Φ. (Note that this assumption is acceptable
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Figure 4: Partitioning the task set, η (top left),
where each task is represented by its utilization,
onto the set of cores, P (top right), using the
WFD (or EDF-os; bottom left) and EDF-hv (bot-
tom right). EDF-hv restricts the available capacity
of each core to Φ.

for under-loaded systems where there are energy saving op-
portunities. For fully-loaded or near fully-loaded systems,
it is unlikely that applying a PM scheme will yield signifi-
cant energy savings. Thus those systems are not the focus
of this work.) Second, since no task can have a utilization
greater than that of a core’s capacity in order to guaran-
tee feasibility, it is also necessary to restrict the utilization
of each task such that ui ≤ Φ (considerations for task sets
with tasks that have a ui > Φ, referred to as oversized tasks,
are presented in Appendix A of [18]). An example compar-
ing the partition of EDF-hv to WFD and EDF-os is shown
in Figure 4. In this example, there are six tasks to be par-
titioned onto four cores. With WFD, one task is assigned
to each core, until all of the cores have one task. Next, the
remaining two tasks are assigned to the cores with the low-
est utilization. Since all of the tasks can fit onto the cores,
the second step of the partitioning process is not initiated,
and, thus, the partition is the same for EDF-os as it is for
WFD (recall that EDF-os is designed to increase feasibility,
not to improve the load-balance). In contrast, with EDF-hv,
the capacity of each core is restricted to Φ such that, after
the initial four tasks have been assigned, the remaining two
tasks will no longer fit into the remaining available capacity
of each core and thus, the remaining two tasks are assigned
as migrating tasks with shares on multiple cores.

Since EDF-hv follows the partitioning process of EDF-os,
EDF-hv can now guarantee that the resultant partition to
be load-balanced; as stated by the following theorem.

Theorem 1. Given a task set η where ui ≤ Φ, i = 1, ...,N,
and a set of M cores, EDF-hv partitions the tasks among the
cores in such a way as to achieve a load-balance.

Proof. As previously mentioned, Anderson et al. showed
that the partitioning process of EDF-os can guarantee fea-
sibility with a system utilization bound of 100% while al-
lowing individual task utilization of up to 100% of a core’s
capacity [2]. As such, for a system where U = M, EDF-



os guarantees that the system can be partitioned. Inter-
estingly, in this case, EDF-os also load-balances the system
since each core must be assigned 100% of its utilization, oth-
erwise,

∑M
j=1 Uj < U = M, which cannot be true. The par-

titioning process of EDF-hv is identical to that of EDF-os,
with the exception of the two modifications. These modifi-
cations effectively induce the case where the task set utiliza-
tion is equal to the available system capacity, which EDF-os
has already been shown to guarantee feasibility. Therefore,
EDF-hv is guaranteed to be load-balanced.

Caveat 1. Restricting the utilization of each task to ui ≤
Φ yields a circular definition that can cause an invalid state.
Consider Equation 7 and Equation 4:

Φ =
U

M
=

∑N
i=1 ui

M
.

Thus, if ui ≤ Φ, then:

ui ≤
∑N
i=1 ui

M
.

Considering the case of τ1:

u1 ≤
∑N
i=1 ui

M
,

which yields:

M · u1 ≤ u1 + u2 + ...+ uN. (14)

Recall that tasks are sorted in a non-increasing order of uti-
lization, i.e., the first task has the largest utilization, and
thus, Equation 14 yields that M times the largest utiliza-
tion must be less than or equal to the sum of N tasks. As
such, Equation 14 is only true if N > M, except in the case
that N = M and u1 = u2 = ... = uN. Since assuming all
tasks have the same utilization is not very practical, EDF-hv
therefore requires that N > M.

Lemma 1. Each core, pj, has at least one fixed task.

Proof. In EDF-hv, N > M, Φ = U
M

, and tasks are first
partitioned using WFD. Under the WFD heuristic, a task
will be assigned to an empty core before a core will be as-
signed a second task. Further, since all tasks have a utiliza-
tion, ui ≤ Φ, it is guaranteed that at least one task can fit
on each core. Finally, since there are more tasks than cores
(i.e., N > M), each core must be assigned at least one fixed
task.

Lemma 2. Each core, pj, has a maximum of two migrat-
ing tasks.

Proof. Following the proof for Property 3 of EDF-os in
[2], it can be shown by induction that during the partition-
ing process of EDF-hv, when assigning a migrating task to
a core, there can be at most one migrating task already as-
signed.

5.2 Scheduling
The reason that tardiness bounds can be derived in EDF-

os, but deadlines cannot be guaranteed is that cores with
migrating tasks can be overloaded when migrating tasks are
executing. As an example, consider the periodic task set for
a multi-core system with two cores, as shown in Table 1. For
simplicity, task periods are given in quanta to avoid having

Task Set Partition
Task Ci Ti (Quanta) ui Task p1 p2

τ1 15 20 75% τ1 75% 0%
τ2 14 20 70% τ2 0% 70%
τ3 11 20 55% τ3 25% 30%

Table 1: Example periodic task set (left) with EDF-
os partition onto a system with two cores (right).

to consider the frequency of the cores. The resultant EDF-
os partition is shown on the right side of Table 1. In this
system, τ1 and τ2 are fixed tasks of p1 and p2, respectively,
while τ3 is a migrating task on both p1 and p2. Based on
the shares of τ3 on p1 and p2, of every eleven jobs of τ3, five
will execute on processor p1, while six will execute on p2.
Although the assigned utilization of p1 and p2 is 100% each,
p1 and p2 are overloaded when they have to execute both
their fixed and migrating tasks. Since all three tasks have
the same period, it is easy to see that during periods where
p1 has only its fixed task, τ1, to execute, it only needs 15 of
the 20 quanta in that period, i.e., the utilization during this
period is only 15

20
= 75%. However, during periods where p1

has its fixed task, τ1, and its migrating task, τ3, to execute,
it must execute 15 + 11 = 26 cycles of 20, i.e., the utiliza-
tion during this period is 15+11

20
= 26

20
= 130%. Therefore,

p1 is overloaded (it is trivial to show that p2 is similarly
overloaded). As such, in EDF-os, since the cores can be
overloaded when they have both their fixed and migrating
tasks, deadlines cannot be guaranteed. However, since the
cores are not fully utilized when they do not have their mi-
grating tasks, the cores can “catch-up”, thus, the tardiness
of deadlines can be bounded.

Therefore, for EDF-hv to guarantee deadlines, the cores
must not be overloaded. Anderson et. al. in [2] propose
that EDF-os can be suitable for HRTS by increasing the
capacity of the system, e.g. increasing the number of cores,
using cores with higher clock speed, etc., until the tardiness
bounds are zero. However, this approach is not ideal as the
tardiness bounds in EDF-os are not dependent on the task
utilizations due to the prioritization of the migrating tasks.
For example, let us reconsider the task set in Table 1. For
p1 to not be overloaded, during a period where both τ1 and
τ3 are on p1, since τ3 is a migrating task, it must complete
τ3 first, and then τ1 can execute. As such, the capacity of
p1 must increase to 11+15

20
= 130%. However, if the WCET

and period of τ3 are increase to 22 and 40, respectively, even
though the utilization of the system remains constant, for
periods when both τ1 and τ3 are on p1, the capacity must
increase to 22+15

20
= 185%. As such, prioritizing migrating

tasks over fixed task yields that guaranteeing deadlines is no
longer solely a function of the utilization.

Corollary 1. In the presence of migrating tasks, EDF-
os cannot guarantee a tardiness bound of zero by only con-
sidering task utilizations.

As a result, in EDF-hv, all tasks are scheduled with EDF,
i.e., migrating tasks are not prioritized over fixed tasks.
Clearly, by changing the prioritization of the migrating and
fixed tasks, the tardiness bounds in [2] for EDF-os are no
longer valid. However, as will be proved next, tardiness
bounds are not necessary for EDF-hv since deadlines can be
guaranteed.



5.3 Guaranteeing Deadlines
It is well-known that, even with all tasks being scheduled

with EDF, task deadlines cannot be guaranteed when a core
is overloaded. In the previous section, it was shown that
EDF-hv can load-balance the task set on the cores. How-
ever, this is insufficient to guarantee deadlines, because the
utilization considered during the partitioning process, shown
in Equation 6, is the average utilization of each core. As has
been discussed, the actual core utilization fluctuates depend-
ing on whether the migrating task(s) are present. Thus, to
guaranteed deadlines, the core must not be overloaded even
when experiencing the maximum utilization.

To determine the maximum utilization that a core can ex-
perience, recall that a fixed task has a non-zero share equal
to the task utilization on only one core, and migrating tasks
have more than one non-zero share less than the task’s uti-
lization on the cores. However, during execution, since mi-
grations are boundary limited, each core will have to be able
to execute the complete utilization of each task assigned to
it. As such, for cores with only fixed tasks, the maximum
utilization is simply the sum of the shares assigned to that
core as given by Equation 6. For cores with one migrating
task, the maximum utilization is the sum of the shares of the
fixed tasks, plus the utilization of the migrating task. Fi-
nally, for cores with two migrating tasks, the maximum uti-
lization is, in the best-case, the sum of the shares of the fixed
tasks plus the utilization of the first migrating task (since
the first migrating task must have a utilization greater than
or equal to the second migrating task by Equation 3), or, in
the worst-case, the sum of the shares of the fixed tasks plus
the utilization of both migrating tasks. The best-case for
cores with two migrating tasks occurs when the migrating
tasks have migration patterns that ensure only one migrat-
ing task at a time will be present on the core; otherwise,
the worst-case will occur. Unfortunately, unless the two mi-
grating tasks have harmonic periods and both tasks have
harmonic shares on all of the cores with non-zero shares, a
time-demand analysis based calculation is required to deter-
mine which case will occur. Thus, to simplify calculation,
the worst-case is used. Therefore, the maximum utilization
that a core can experience is:

Ujmax =

Nj∑
i=1

ui, ∀ τi ∈ ηj . (15)

For cores with only fixed tasks or cores with only one mi-
grating task, Equation 15 is the maximum utilization that a
core can experience, however, for cores with two migrating
tasks, Equation 15 is an upper bound on the maximum uti-
lization. Further, the maximum utilization may only occur
rarely (e.g., if a core with a single migrating task is assigned
only a hundredth share of the migrating task’s utilization,
the maximum utilization will only occur one out of a hun-
dred iterations of the task), yet it is the upper limit on the
utilization that the core can experience. As such, even if the
maximum utilization only occurs rarely, to guarantee dead-
lines under all conditions, the maximum utilization must be
less than or equal to one.

Theorem 2. If Ujmax ≤ 1, all task deadlines are guar-
anteed under EDF-hv.

Proof. EDF is known to be able to guarantee deadlines
on a core with a periodic task set with implicit deadlines as

long as the utilization of that processor is less than or equal
to one [15]. EDF-hv also assumes a periodic task set but
allowing tasks to migrate at job boundaries complicates the
behavior of the task set. While cores with only fixed tasks
have a periodic task set with implicit deadlines, meaning
deadlines can be guaranteed by the properties of EDF, for
a core with both fixed and migrating tasks, some share of
the time the migrating tasks will not be executing jobs on
the core. However, when the migrating tasks are execut-
ing on the cores, the jobs are released at period boundaries
and have implicit deadlines. In fact, the task will still have
all the properties of a periodic task with implicit deadlines,
with the exception that for some periods, the execution time
will be zero. Thus the total utilization of a core with migrat-
ing tasks will always be less than or equal to the maximum
utilization. Therefore, since the maximum utilization of all
fixed and migrating tasks is less than or equal to one, dead-
lines can be guaranteed by EDF.

Therefore, in EDF-hv, guaranteeing deadlines is depen-
dent on the maximum utilization that any of the cores in
the system can experience, which is appropriate for run-time
use.

6. SIMULATION RESULTS
EDF-hv was compared to WFD for systems with two,

four, and eight cores per VFI to assess its performance. Al-
though it may seem that EDF-hv should be compared to
EDF-os, since the former is heavily based on the latter, a
fair comparison cannot be made, as EDF-os is intended for
soft real-time systems. We describe our setup and explain
the results next.

6.1 Simulation Setup
The simulation setup for EDF-hv is similar to that for

VFI cost with four exceptions. First, to establish a base-
line for EDF-hv, task execution profiles were not considered,
i.e., each task was assumed to require its WCET. Second,
instead of simulating 20 task sets at each system utiliza-
tion, 100 task sets were simulated at each utilization. Since
task execution profiles were not considered, each task set
was simulated using EDF-hv and WFD. The performance
of EDF-hv was then assessed by comparing the ratio of the
total dynamic energy consumption of EDF-hv to WFD (e.g.
a performance of 80% means that EDF-hv required only 80%
of the energy that WFD required to execute the same task
set). Third, the frequency profile was set such that the VFI
could reduce their frequency to 60% of the maximum fre-
quency at 1% granularity. This frequency profile follows the
work in [4], which showed that the Intel Atom N2600 dual
core processor has 22 v/f pairs when reducing the voltage to
approximately 62% of the maximum. Since the number of
v/f pairs can vary significantly between hardware, for this
work we simulate a multi-core with a high number of v/f
pairs to reduce the effects of the frequency profile on the re-
sults. Fourth, task sets with system utilizations from 45% to
85% were considered at 10% intervals. The maximum total
utilization was reduced to 85%, as only task sets that could
meet Theorem 2 were considered, which was not typical of
task sets with utilization above 85%. Note that considera-
tions for frequency profiles with a restricted number of v/f
pairs, system utilizations at 5% intervals, and systems with
eight cores per VFI were omitted due to space constraints,



Figure 5: Performance of EDF-hv versus the imbal-
ance of WFD on a two-core systems with one VFI
for task sets with 1.5, 2.0, and 2.5 average number
of tasks per core (i.e., N/M).

but are available in [18].

6.2 Performance of EDF-hv
The performance of EDF-hv as compared to WFD are

shown in Figure 5 and Figure 6. Figure 5 shows the per-
formance for a system with two cores per VFI and Figure 6
shows the performance for a system with four cores per VFI.
Both Figure 5 and Figure 6 are comprised of three graphs
with each graph expressing the results for a given average
number of tasks per core. Further, each graph shows a set
of scatter plots for the considered system utilizations where
the individual points in the scatter plot represents a task
set. The performance is shown versus the imbalance because
the primary way that EDF-hv conserves energy is by load-
balancing the system and thus, it is expected that EDF-hv
will typically only improve the energy consumption of task
sets with some imbalance. Trend lines for each system uti-
lization are shown for reference.

For utilizations less than 55%, EDF-hv performed worse
on average than WFD, which was expected since the utiliza-
tions of these systems is lower than the VFI could reduce
their frequency. However, for utilizations 55% and above,
EDF-hv consumed 6.3% less energy than WFD. Further, as
shown in Figure 5 and Figure 6, there is a negative corre-
lation between the amount of imbalance in a task set and
the performance of EDF-hv. Additionally, as the average
number of tasks per core increased, so did the negative cor-
relation between imbalance and performance. This demon-
strates that for systems with imbalance, EDF-hv typically
performed better that WFD.

On average EDF-hv consumed 4.8% less energy than WFD,

Figure 6: Performance of EDF-hv versus the imbal-
ance of WFD on a four-core systems with one VFI
for task sets with 1.5, 2.0, and 2.5 average number
of tasks per core (i.e., N/M).

however, for systems with a utilization of 55% or greater and
an imbalance of 5% or greater, the average energy consump-
tion was reduced by 15.9%. As such, as shown in Figure
7, while applying EDF-hv generally can improve overall en-
ergy efficiency, it is much better to only apply EDF-hv to
systems with some imbalance and a system utilization ap-
proximately greater than or equal to the percentage of the
maximum frequency that the VFI can reduce its frequency
to (i.e. U & 1 − f1

fK
). Fortunately, calculating the imbal-

ance of the system and the system utilization have a com-
putational complexity of N (i.e., O(N)), so determining sys-
tems that are appropriate for EDF-hv can be accomplished
quickly.

7. CONCLUSION AND FUTURE WORK
The best- and worst-case VFI cost have been derived, and

both the mathematical model and simulation results suggest
that the VFI cost can be a significant contributor to the
overall energy consumption. The proposed algorithm, EDF-
hv, can help to mitigate VFI cost in HRTS with multiple
cores per VFI. Our results also show that the energy savings
from EDF-hv can be significant, especially for systems with
significant imbalance and high utilizations.

Several aspects of this work can be further explored to im-
prove energy efficiency. First, a task scheduling algorithm as
well as a DVFS algorithm that is explicitly designed to ac-
commodate migrating tasks can be developed. Second, fur-
ther exploration into the relationship between VFI cost and
imbalance may provide insight into ways to improve EDF-
hv. A third area of research is to remove the boundary lim-
ited property of EDF-hv. This would increase the scheduling
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Figure 7: Performance of EDF-hv compared to
WFD with two-cores and four-cores per VFI when
applied generally (i.e. φ ≥ 0%) and when applied
only to systems with at least 5% of imbalance.

overhead, which would increase energy consumption, how-
ever, removing the boundary limited property could yield
energy saving to justify the increased overhead. Finally, in
addition to saving energy, load-balancing with EDF-hv may
have some advantages for slowing down aging.
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