
Journal of Hardware and Systems Security manuscript No.
(will be inserted by the editor)

On the Limitations of Obfuscating Redundant Circuits in
Frustrating Hardware Trojan Implantation

Nathanael Weidler · Ryan Gerdes · Thidapat Chantem

Received: date / Accepted: date

Abstract Split manufacturing is a method to secure

circuits by creating layers of a circuit separately—one

layer is manufactured at a trusted foundry and the

other at an untrusted foundry. The complete circuit is

unknowable without both pieces, thus the circuit can’t

be effectively manipulated by, e.g., inserting a hardware

Trojan at manufacture time. A prominent example of

this approach is the work “Securing Computer Hard-

ware Using 3D Integrated Circuit (IC) Technology and

Split Manufacturing for Obfuscation” [11]. In the work

it is claimed that even if an attacker knows the ex-

act layout of a circuit before division, the technique

set forth would prevent the attacker from inserting an

efficient (i.e., undetectable) hardware Trojan into the

circuit unless they possessed knowledge of the trusted

layer. This paper is notable because it gives strong the-
oretical reasons, as opposed to only providing empirical

results, to suggest that the proposed method provides

security for circuits.

In this work we examine whether this particular

split manufacturing approach is effective in protecting

redundant circuits, such as implementations of cryp-

tographic ciphers, from the implantation of hardware

Trojans. We show that it is indeed possible to insert a

Trojan with a much higher success rate, and smaller

footprint, than the example discussed in [11], which

implies that, at least for this class of circuits, obfus-

cation provides significantly less security than the au-

N. Weidler
Utah State University
E-mail: nweidler@gmail.com
ORCiD: 0000-0003-4947-0460

R. Gerdes Virginia Tech E-mail: rgerdes@vt.edu
ORCiD: 0000-0003-0876-1181 · T. Chantem Virginia Tech E-
mail: tchantem@vt.edu
ORCiD: 0000-0002-5688-5720

thors’ theoretical analysis would suggest. To demon-

strate its general applicability, our analysis is carried

out not only on a the same type of circuit used as an

example in [11] (an implementation of the Data En-

cryption Standard (DES)) but also an Advanced En-

cryption Standard (AES) circuit. For both circuits we

demonstrate vast improvement for attacker success us-

ing the metrics used in [11].

1 Introduction

Hardware Trojans have been widely discussed and ana-

lyzed [12,8,23,33,19,16]. Trojans in the hardware con-

text are malicious modifications made to a circuit that

can, for example, leak confidential information, such
as secret keys, or cause a circuit to malfunction [23]. A

hardware Trojan must be inserted at some point during

the development of an integrated circuit (IC). There are

four possible points of insertion during this cycle: the

specification phase, the design phase, the fabrication

phase and the assembly phase [30]. Hardware Trojans

present a potential security concern to anything sys-

tem or device that utilizes integrated circuits. The U.S.

Department of Commerce has estimated that counter-

feit electronic components have appeared in 39% of the

Department of Defense supply chain [25]. Such counter-

feit parts have been discovered in Navy helicopters and

Air Force planes [4]. Thus, there exists a very real pos-

sibility that ICs that include malicious logic designed

to leak critical information or make systems fail could

make their way into either military or civilian systems.

In their efforts to thwart malicious actors, researchers

have discovered new forms of Trojans and ways to de-

feat them [12]. Others have concentrated on identifying

ways to detect hardware Trojans in a compromised cir-



2 Nathanael Weidler et al.

cuit [20,21]. Another approach taken to mitigate these

threats is to harden circuits against hardware Trojan

implantation. This approach creates circuits in such a

way that the difficulty of successfully inserting a Trojan

is significantly increased, if not impossible. An example

of this approach was proposed by Imeson et al. [11],

whereby a wire lifting procedure, coupled with split

fabrication, was used to obscure the target circuit from

the attacker. This method concentrated on obfuscating

the circuit: if an attacker cannot distinguish different

parts of the circuit from one another, they would not

be able to insert an effective hardware Trojan. This

procedure provided a novel method to secure a circuit

against hardware Trojan implantation at the foundry.

What distinguishes [11], and makes it an impor-

tant work in the field of circuit obfuscation, is that it

provides strong theoretical proofs for its security [31],

unlike most of the literature on the topic, including

more recent papers, which merely provide empirical re-

sults [31,18,28,29,27,32]. Given its status as a founda-

tional work in the field, it is important to understand

the limitations of its methods, which will be the focus

of the current work.

Specifically, we show that the claim of increased se-

curity for circuits without regard to type is too broad

(it is implicit in the work that the approach would have

applicability to many types of circuits). While we do

not dispute the claims of increased security for circuits

generally, we do hypothesize that there exists a class

of circuits for which the proposed obfuscation method

does not provide the claimed security; viz., redundant

circuits (defined in Section 3.3) with cryptographic cir-

cuits belonging to this this subclass of circuits.

In what follows we present methods to bypass the

defense of [11] that we believe to be applicable not only

the specific circuit examined therein (an implementa-

tion of the Data Encryption Standard (DES)) but also

other redundant, pipelined circuits that are widely used

in cryptography; e.g., the Feistel structure generally

and substitution-permutation networks (SPN) [17,15,

7,1,22]. The implementation of ciphers based on these

structures are known to be vulnerable to fault injection

attacks [13,2], to which our attack is a Trojan-based

variant.

1.1 Contributions

A significant amount of time was spent in unsuccess-

fully trying to reproduce the results of the wire lifting

procedure detailed in [11], including running the au-

thor’s publicly available code on their example circuits.

With this limitation in mind (i.e., that the original find-

ings of [11] could not be replicated), we make the most

pessimistic assumptions for an attacker in our work;

i.e., we consider the most secure possible outcome for

the result of the wire lifting procedure. Despite this we

are able to show that the wire lifting procedure does

not provide the intended amount of security for highly

redundant circuits, particularly cryptographic circuits,

e.g., implementations of DES and the Advanced En-

cryption Standard (AES). These algorithms were cho-

sen to show that the wire lifting procedure does not

frustrate the implantation of a hardware Trojan for ei-

ther a Feistel or SPN structure.

To defeat the wire lifting procedure for DES we at-

tack all portions of the circuit that are indistinguishable

from one another at the same time, instead of choos-

ing one portion and only attacking it, or attacking each

portion one at a time, as is suggested in [11]. In at-

tacking an AES circuit we do not attack every indistin-

guishable portion of the circuit at the same time but

instead attack enough of the indistinguishable portions

of the circuit to be able to recover the key through an

exhaustive search. This allows the size of the Trojan

to be less than it would have to be if every portion of

the circuit indistinguishable from another were to be

attacked. This method can also be applied to a DES

circuit, increasing the probability of success of against

a DES circuit to 100%.

1.2 Paper Organization

The motivation for our work and high-level findings

are discussed in Section 2. Background on split man-

ufacturing circuit obfuscation, the fault-style attack we

consider to defeat obfuscation, and the types of circuits

it is applicable to (redundant ones) and why they are

vulnerable are detailed in Section 3. Section 4 discusses

the threat model and details several weaknesses with

split manufacturing obfuscation, specifically pertaining

to cryptographic circuits based on Feistel structures,

e.g., DES. Section 5 demonstrates how these weaknesses

extend to other, non-Feistal structures, namely substi-

tution–permutation networks (SPN), as exemplified by

AES. Finally conclusions and future work are put forth

in Section 6.

2 Motivation and Findings

With a work as highly regarded and influential as [11],

it is important to point out limitations, without at-

tempting to discredit the work as a whole, so that the

method proposed is not erroneously applied to circuits

for which the promise of increased security cannot be

fulfilled.



On the Limitations of Obfuscating Redundant Circuits in Frustrating Hardware Trojan Implantation 3

For the circuit example (DES) given in [11] the claim

is made that an attacker could either place a small Tro-

jan in the circuit with a 1/256 chance of success or

place a large, 1280 gate Trojan in the circuit with a

100% chance of success, though the number of plain-

texts would increase by 255×. We present another pos-

sibility: a hardware Trojan containing only 256 gates.

Simulations show a 75% chance of recovering the secret

key with only two plaintexts presented using this Tro-

jan. This is a 191× improvement over the success rate

of the small Trojan presented, and at the same time,

the Trojan comprises 5× fewer gates and requires ex-

actly as many plaintexts as the small Trojan, not the

255× number required by the large Trojan.

We believe that the example of a cryptographic cir-

cuit was a poor choice for the wire lifting procedure not

only because its size makes it time prohibitive to ap-

ply the method to (as discussed in Section 4), but also

because these circuits are highly redundant in nature,

which allows for effective fault-style attacks. DES has

16 identical rounds making it fit into the class of highly

redundant circuits. It has been broken using differen-

tial fault analysis on early, middle and late rounds [24].

That is, even if a specific bit cannot be targeted because

of the protections the wire lifting procedure provides,

the circuit could still be compromised by a hardware

Trojan. So long as faults can be induced in the DES

circuit, even if the location of the Trojan or the round

in which it was implanted in is not certain, the secret

key can still be discovered (as shown in Sections 4 and

5).

Furthermore, we attempted to generalize the at-

tack by investigating another highly redundant cryp-

tographic circuit that implements AES, which uses a

different cryptographic structure (SPN) from DES. We

show that for an AES circuit the wire lifting procedure

again does not provide the claimed security as the se-

cret key can be recovered using at most six plaintexts

(Section 5). Specifically, we show that with a Trojan of

640 gates the key can be recovered 53% of the time, 700

gates 89% of the time and an 800 gate Trojan would be

able to recover the key 99.9% of the time. These Trojans

are still 50%, 45% and 37.5% smaller than the style of

Trojan suggested for DES (and adapted to AES), and

they use 97.6% fewer plaintexts in the worst case.

We also feel it important to point out the difficulties

we experienced attempting to reproduce the results of

the DES example given in [11]. We were unable to per-

form the wire lifting procedure as outlined in the origi-

nal work. We used the code base and examples from [11]

that were made available to the public [10]. We have

had a varying degree of success using this code. Over

the course of several years, we have been in contact with

the authors of the original work, who were at first very

helpful in aiding our efforts to reproduce their work.

They fixed errors in the code base and added files that

were needed to build the code but were not originally

included. The small example from the README provided

does work, for instance. However, for the more complex

circuits that are included with the code base, e.g., the

DES circuit, the wire-lifting procedure never success-

fully terminated.

We note that one of the points in the original paper

was that the wire lifting procedure is scalable, i.e., can

be used on a large circuit like DES. We believe that

our failure to produce a k-secure DES circuit, using the

code provided by the authors, indicates a significant

weakness of the original work. That is, although the

wire lifting procedure, as implemented in the authors’

code, works on smaller, simpler circuits, we have not

been able to have a partitioned portion of the DES cir-

cuit complete the procedure. Even after gaining access

to the cluster resources at the University of Utah and

running the code for three weeks, the wire lifting proce-

dure made little progress. We estimated that given the

progress it would take additional years to complete. On

another machine with the ability to run 24 threads and

128 GB of RAM, the example DES wire lifting proce-

dure ran for over 135 days without finishing or show-

ing significant progress. According to the authors, when

queried, such computational resources should have been

sufficient but they were unable to provide a time frame

for completion.

3 Background

In this section, a brief background on circuit obfusca-

tion is presented and followed by a short explanation of

fault injection analysis. The term redundant circuits, as

used in this work, is then defined.

3.1 Split Manufacturing Circuit Obfuscation

Imeson et al. introduced a wire lifting procedure to se-

lect wires to remove from the untrusted tier and place

on the trusted tier. The wire lifting procedure is a greedy

heuristic to make individual gates or groupings of gates

indistinguishable from one another [11]. Without the

traces between them on the untrusted tier the attacker

cannot identify the intended location of his Trojan.

A gate is said to k-secure when there are k−1 other

gates in the circuit that are indistinguishable from that

gate. The higher number, the more secure the circuit.

Imeson et al. define the k-security of the circuit as each



4 Nathanael Weidler et al.

1

2 5

3

A

B

C 6

4

U

V
Y

W Z

X

Graph 1

Graph 2

0

8‐bit select

0 1 256
...

0 1 256
...

0
Original Trojan Proposed Trojan

Feistel Function

Round 
15 Key

Feistel Function

Round 
16 Key

Left Block 16

Right Block 15Left Block 15 

Right Block 16 

Unknown Value
Known Value

Key

SubBytes

ShiftRows

MixColumns

AddRoundKey

Partitioning

SubBytes

ShiftRows

MixColumns

AddRoundKey

1

2 5

3

A

B

C 6

4

U

V
Y

W Z

X

Graph 1

Graph 2

D

E

F

Pipeline
Stage

1
2 5

3

A
B
C 6

4

Graph 3 1
2 5

3 6

4

D
E

F

Graph 4O
P S

Q T

R

U
V Y

W Z

X

Graph 5O
P S

Q T

R

U
V Y

W Z

X

Fig. 1 Wire lifting example. Graph 2 has a k-security of 2,
as each subgraph has at least one other that is identical to
itself.

gate in the circuit being at least k-secure. As an ex-

ample, after the wire-lifting procedure, if there were a

set of gates that are 3-secure and the remaining gates

are 5-secure, the k-security of the circuit would be 3-

secure, as each gate is at least 3-secure. Depending on

the target k-security of a circuit, more or fewer wires

may need to be lifted.

Figure 1 shows an example circuit as an illustration

of lifting wires to create k-security. Graph 1 represents

a circuit in the original state with inputs A, B, and C and

outputs D, E, and F. Graph 2 represents how the circuit

would look after a wire lifting procedure to make the

circuit 2-secure. Notice that the inputs and outputs are

removed in Graph 2, as those wires have been entirely

removed. In this example each gate, or subgraph, is in-

distinguishable from 2-1 or one other gate, or subgraph,

making the circuit 2-secure. It is unknown if node V in

Graph 2 represents node 2 or node 4 from Graph 1.

Also, it is unknown if the subgraph of node U to node

Y is the same as the subgraph of node 1 to node 5, or

node 3 to node 6.

3.2 Fault Injection Analysis

The method of circuit obfuscation by wire-lifting set

forth in [11] is said to protect a DES circuit against

a hardware Trojan which would, essentially, create a

fault attack on the least significant bit (LSB) of the

fourteenth round. This technique of discovering the se-

cret key by fault injection on the output of the four-

teenth round or input of the fifteenth round is set forth

in [24]. The technique is as follows: a known fault on

the output of the fourteenth round propagates through

the fifteenth and 16th rounds. (In this case, the known

fault ensures a particular bit is always be zero.) By

comparing a previously captured ciphertext which did

not have the fault injected during it’s encryption, to

the ciphertext (using the same plain text) corrupted by

the fault, the attacker is able to determine certain bits

of the round key for the 16th round. The remaining

bits of the round key are guessed and reversed through

the DES key schedule to attain a DES secret key with

eight missing bits. These final bits are then searched

in a brute force manner by running the DES algorithm

with each key and the plaintext that should give the

uncorrupted cipher text. This process is iterated until

a key is found that yield a match between the plain-

text and the uncorrupted cipher text, at which point

the entire secret key is known.

3.3 Redundant Circuits and k-security

We define a redundant circuit to be a circuit in which

logic is duplicated multiple times, separated by pipeline

stages. DES is a redundant circuit because it contains

16 identical rounds. AES is a redundant circuit because

it contains nine identical rounds and a tenth round that

is nearly identical to the first nine. The methods set

forth in [11] are very good at creating portions of cir-

cuits that are indistinguishable from one another; how-

ever, the impact to the security of the method has not

been explicitly considered in the case of them being

applied to circuits that are redundant in nature. Con-

sider that redundant circuits run through the wire lift-

ing procedure would be subject to one of the following

two outcomes, assuming the same number of wires are

lifted from each circuit:

1. Each redundant portion of the circuit will be iden-

tical to one another after the wire lifting procedure.

2. The k-security of the circuit will be greatly reduced.

For example, Figure 2 shows the graph representa-

tion of a redundant circuit. This is Graph 1 taken from

Figure 1 duplicated through a pipeline stage. It has

two redundant portions represented by nodes 1-6 and

nodes 7-12. If we remove the inputs (A, B and C) and

the outputs (D, E and F) as well as the pipeline stage

and allow the circuit to undergo the wire lifting pro-

cedure Figure 3 and Figure 4 are two possible results.

Figure 3 aligns with point 1 from above. The two re-

dundant portions of the design have had identical wires

lifted. If a single redundant portion was examined by

itself, it would look identical to Graph 2 taken from Fig-

ure 1 and would have a k-security of 2. However, the



On the Limitations of Obfuscating Redundant Circuits in Frustrating Hardware Trojan Implantation 5

1

2 5

3

A

B

C 6

4

U

V
Y

W Z

X

Graph 1

Graph 2

0

8‐bit select

0 1 256
...

0 1 256
...

0
Original Trojan Proposed Trojan

Feistel Function

Round 
15 Key

Feistel Function

Round 
16 Key

Left Block 16

Right Block 15Left Block 15 

Right Block 16 

Unknown Value
Known Value

Key

SubBytes

ShiftRows

MixColumns

AddRoundKey

Partitioning

SubBytes

ShiftRows

MixColumns

AddRoundKey

1

2 5

3

A

B

C 6

4

U

V
Y

W Z

X

Graph 1

Graph 2

D

E

F

Graph 4O

P
S

Q T

R

U

V
Y

W Z

X

Pi
pe

lin
e 

St
ag

e

1

2 5

3

A

B

C 6

4

Graph 3
7

8 11

9 12

10

D

E

F

X

Graph 5O

P
S

Q T

R

U

V
Y

W Z

Fig. 2 An example of a redundant circuit with two redun-
dant portions and a pipeline stage separating the two.

1

2 5

3

A

B

C 6

4

U

V
Y

W Z

X

Graph 1

Graph 2

0

8‐bit select

0 1 256
...

0 1 256
...

0
Original Trojan Proposed Trojan

Feistel Function

Round 
15 Key

Feistel Function

Round 
16 Key

Left Block 16

Right Block 15Left Block 15 

Right Block 16 

Unknown Value
Known Value

Key

SubBytes

ShiftRows

MixColumns

AddRoundKey

Partitioning

SubBytes

ShiftRows

MixColumns

AddRoundKey

1

2 5

3

A

B

C 6

4

U

V
Y

W Z

X

Graph 1

Graph 2

D

E

F

Graph 4O

P
S

Q T

R

U

V
Y

W Z

X

Pipeline
Stage

1

2 5

3

A

B

C 6

4

Graph 3
1

2 5

3 6

4

D

E

F

X

Graph 5O

P
S

Q T

R

U

V
Y

W Z

Fig. 3 A redundant circuit which has undergone the wire
lifting procedure and each redundant portion is identical to
each other. The k-security of the circuit is 4.

1

2 5

3

A

B

C 6

4

U

V
Y

W Z

X

Graph 1

Graph 2

0

8‐bit select

0 1 256
...

0 1 256
...

0
Original Trojan Proposed Trojan

Feistel Function

Round 
15 Key

Feistel Function

Round 
16 Key

Left Block 16

Right Block 15Left Block 15 

Right Block 16 

Unknown Value
Known Value

Key

SubBytes

ShiftRows

MixColumns

AddRoundKey

Partitioning

SubBytes

ShiftRows

MixColumns

AddRoundKey

1

2 5

3

A

B

C 6

4

U

V
Y

W Z

X

Graph 1

Graph 2

D

E

F

Graph 4O

P
S

Q T

R

U

V
Y

W Z

X

Pipeline
Stage

1

2 5

3

A

B

C 6

4

Graph 3
7

8 11

9 12

10

D

E

F

X

Graph 5O

P
S

Q T

R

U

V
Y

W Z

Fig. 4 A redundant circuit which has undergone the wire lift-
ing procedure and the two redundant portions are not iden-
tical to each other. The k-security of this circuit is 2.

circuit as a whole has a k-security of 4, i.e., each sub-

graph is indistinguishable from three other subgraphs.

Figure 4 aligns with point 2 from above. In this

case, after the wire lifting procedure the two redundant

portions of the circuit are not identical to one another

but have the same number of wires lifted as Figure 3.

Each redundant portion of the circuit, when examined

independently, has a k-security of two and the circuit

as a whole also has a k-security of 2. The only way to

increase the k-security of Figure 4 to four would be to

remove the remaining wires. Minimizing the number of

wires lifted is important because as the number of lifted

wires increases, so increases the power consumption,

delay, and area of a circuit [11].

The above illustrates the security concern that re-

dundant circuits introduce: if an attacker wished to

modify the circuit represented by Graph 3 in Figure 2

so that the output D was always held to 0, they would

need to attack node 11. Similarly, the DES circuit ex-

ample in [11] suggested that a successful Trojan would

need 5× the number of gates as the k-security of the

node to be attacked. In fact, this could be done with

exactly the number of gates equal to the k-security of

the node to be attacked. In Figure 3 an AND gate with

one input held to 0 once triggered, would be attached

to nodes S, T, Y, and Z. This would guarantee that out-

put D was held to zero, and would require exactly four

AND gates.

4 Weaknesses of Split Manufacturing

Obfuscation on Redundant Circuitry

The following section describes the threat model, the

specific DES circuit that was attacked, and the attacks

which demonstrate that the wire lifting procedure set

forth in [11] does not provide the the level of security

that it claims because of the redundant nature of the

DES circuit.

4.1 Threat Model

We use the same threat model as the authors of [11]. We

assume that the Trojan is inserted during the fabrica-

tion phase. In addition, the attacker has full knowledge

of the original circuit. Also, a trusted party has per-

formed the wire lifting procedure, as described earlier,

and manufactured the trusted tier. The attacker does

not have a knowledge of the results of the wire lifting

procedure. Hence, if the attacker intends to change the

behavior of the circuit, they can only do so with a one

in k chance of success, where k is the k-security of the

circuit. This is because the attacker will not be able

to differentiate any gate between itself and k − 1 other

gates.

We assume a pipelined DES circuit on an application-

specific integrated circuit (ASIC), as explained in Sec-

tion 4.2. The attacker is able to supply the device with

plaintext challenges of their choosing and observe the

cipher text outputs. The attacker is also able to trigger

the Trojan, thus allowing them to learn the secret key.

4.2 The DES Circuit

We begin by discussing the DES circuit used in the orig-

inal work. The circuit from [11] is described as having

approximately 35,000 logic gates, which, based upon an

examination of publicly available DES cores, matches

well with a pipelined implementation of DES, and so

we assumed a pipelined architecture.

DES has 16 rounds of logic that are identical to

one another [24], hence it is a redundant circuit. DES

was used in [11] as a demonstration of the difficulty an

attacker would have implanting a successful hardware



6 Nathanael Weidler et al.

Trojan into a design that had undergone the wire lifting

procedure. Per [11] a k-security of 16 is achieved by sim-

ply removing the interconnects between the rounds; i.e.,

each round is indistinguishable from any other round in

the circuit. Also, as stated in [11], after the wire lifting

procedure the final circuit is 64-secure with the bit un-

der attack, the LSB of the fourteenth round, being in

fact 256 secure.

As this is a fully pipelined design, a cipher text ap-

pears at the output on each clock cycle, after the initial

delay of filling the pipeline. Each of the 16 rounds is

assumed to be operating on a different encryption on

the same clock cycle, so there are 16 different plain-

texts being encrypted on each clock cycle, provided the

pipeline remains full.

4.3 Attack Background

In order to introduce the attacks we propose, and to ex-

plain the only attacks that Imeson et al. claimed were

possible, let us return to Figure 2, an example circuit

with two redundant portions, and Figure 3, which de-

picts a circuit that has undergone the wire lifting pro-

cedure. This example does not show a DES circuit but

we use it for the purposes of illustration. After the wire

lifting procedure has taken place, nodes S, T, Y, and Z

are indistinguishable from node 11. If an attacker was

interested in causing a fault on node 11, from Figure 2,

Imeson et al. claim that there are two ways to do this

after the wire lifting procedure. Either an attacker must

choose one of the indistinguishable nodes to attack, and

accept a low chance of success (in this case they have

a 1/4 chance of success), or attack each of the nodes,

one at a time. The problem with attacking each of the

indistinguishable nodes one at a time is that it creates a

very large Trojan because of the large multiplexer that

would be required to select the gate under attack.

For this example we would propose that all four

of the indistinguishable nodes be attacked at the same

time. Because the redundant portions are separated by

a pipeline stage, the faults induced on the nodes in the

first stage have no effect on the outcome of the injected

fault on second stage. We will show that this style of

attack would have a higher probability of success than

the small Trojan of [11] and be much smaller than their

large Trojan.

Let us extend this example to DES, which was used

as an example of a large circuit for which it is claimed

the wire lifting procedure would prevent a Trojan from

being successfully implanted. A known weakness of DES

to fault injection, which was discussed in Section 3.2,

was identified as a potential attack vector for a Tro-

jan. Specifically, a Trojan needs to target the LSB of

0

8‐bit select

0 1 255

...
0 1 255

...

0
Original Trojan Proposed Trojan

Fig. 5 The figure on the left shows the original Trojan which
requires 1280 gates. The figure on the right shows a smarter
Trojan which requires 256 gates, numbered 0 to 255.

the fourteenth round: either the attacker could choose

one of the 256 indistinguishable possibilities and have

a 1/256 chance of success, or attack each of the options

one at a time in a multiplexed attack which would yield

a larger Trojan. However, we suggest that an attacker

might attack each of the 256 bits all at once, holding

them at zero simultaneously for a single clock cycle.

This new attack would have two effects.

The first effect is that it would hold the LSB of

round fourteen to zero for a particular plaintext. It

would also hold fifteen other bits to zero for the four-

teenth round as the LSB of the output is 16-secure

within the round. The other effect is that each of the

other rounds will have 16 bits that are also held to zero.

However, for a pipelined design the bits held to zero in

the other rounds will have no effect on the cipher text

output in question. The other plaintexts with induced

errors are be discarded.

This new design for the Trojan is compared to the

original in Figure 5. The removal of the multiplexer

decreases the size of the Trojan dramatically, from 1280

gates to 256.

4.4 Attack Implementation

We discuss two attacks against DES. A pipelined im-

plementation of DES was obtained from opencores.org

[26], in order to be unbiased, and used for these at-

tacks. The circuit was unmodified with the exception of

inserting the hardware Trojan into the design. As the

wire lifting procedure set forth in [11] did not converge,

we used several pessimistic assumptions to hinder the

attacker in an effort to be fair and unbiased.

In the first attack we induced a fault at the LSB

output of the fourteenth round along with fifteen other

random locations in the round. This is pessimistic be-

cause any bit in the round is a candidate for the fifteen

fault locations chosen at random. In reality, only a sim-

ilar subcircuit should be eligible as it would need to be

logically identical to the LSB output of the fourteenth



On the Limitations of Obfuscating Redundant Circuits in Frustrating Hardware Trojan Implantation 7

round for the wire lifting procedure to leave them indis-

tinguishable from each other. In the second attack the

circuit is examined as a whole and so the LSB output of

the fourteenth round has a fault induced on it, as well

as 255 other, randomly selected locations throughout

the circuit. These self-imposed pessimistic assumptions

make it very difficult for the attacker to succeed. Both

of these attacks were carried out using Verilog simula-

tions.

The simulations were run as follows. We randomly

selected the bits to be held to zero along with the LSB

of the fourteenth round. These bits were not limited

to portions of the circuit that may be indistinguish-

able from the LSB of the fourteenth round. This is a

very pessimistic approach for the attacker because it

decreases the chance of being able to recover the key

given that more bits are corrupted. Each attack was

simulated 10,000 times with each simulation, again, se-

lecting new random locations in the circuit for the Tro-

jan to hold to 0, along with the LSB of the output of

the fourteenth round. This was done in lieu of the wire

lifting procedure.

4.4.1 Attack One: Limit Scope to the Round Fourteen

The first attack entails attacking a single round in the

unbiased DES circuit. If we assume that the entire cir-

cuit is 256-secure and there are 16 identical rounds, then

if the LSB has 255 other gates that look exactly like

it after the wire lifting procedure then the fourteenth

round would have fifteen other gates that are indistin-

guishable from it. This amounts to 16 bits per round.

(This assumption is based on the statement from page

twelve of [11] which states, “We note that a security

level of 16 is obtained in the first few rounds of par-

titioning by removing 13% of the wires, i.e., all wires

that lie between successive DES rounds.” [11]) There-

fore, in addition to the AND gate placed on the LSB of

the fourteenth round to hold it to zero we also randomly

selected fifteen other locations where a value would be

held to zero by an AND gate triggered at the same in-

stant as the gate tying the LSB to zero.

We selected fifteen random locations to provide an

unbiased simulation of what gates an attacker might be

faced with in a 16-secure round. Only fifteen random lo-

cations were needed in the fourteenth round because the

other 240 (255−15) other locations that would be indis-

tinguishable from the LSB of the fourteenth round are

corrupted as well, however, they are in different rounds

which cause corruption to different plaintexts being en-

crypted. Sixteen total corrupted plaintexts would result

but we are only interested in the corrupted plaintext

resulting from the corruption in the fourteenth round.

The additional cipher texts are discarded.

4.4.2 Attack Two: Allow any bit to be corrupted

In an effort to expand our findings, we designed a sec-

ond attack. Although we felt that our assumptions used

in the first attack were sound, in an attempt to be un-

biased, we created a second, more restrictive attack to

confirm the weakness of the wire lifting procedure. If

we had been able to successfully complete the wire lift-

ing procedure this would not have been necessary, as

we could have proven our previous assumptions.

This second attack extended the first attack to con-

sider the circuit as a whole. As the LSB of the four-

teenth round is said to be 256-secure, we randomly se-

lected 255 bits from anywhere in the circuit and held

those bits to zero in the same clock cycle that we held

the LSB of the fourteenth round to zero. Note, there

was other logic in the pipelined DES circuit that was

outside of the round logic, such as the key scheduler.

The setup for this attack included all logic in the de-

sign, not just the logic found within the 16 rounds.

Each simulation represents a single implementation

of possible Trojan logic. The actual Trojan circuit would

contain 256 AND gates to inject a fault onto each gate

indistinguishable from the LSB of the fourteenth round.

These simulations helped us determine the likelihood of

success of an attack on a DES circuit that has under-

gone the wire lifting procedure.

4.5 Attack Results

For each of the two attacks the plaintext input remained

constant to reduce the number of variables. Both the

corrupted and uncorrupted ciphertext outputs were col-

lected from Verilog simulations. These outputs were an-

alyzed using the fault injection analysis methods de-

scribed in [3] and expanded upon in [24]. A C program

was written to automatically implement these methods

to determine whether or not the secret key could be

identified.

These methods created several guesses for the round

key of the fifteenth round. Each guess contained 48 of

the needed 56 bits of the secret key. Then the remaining

256 possibilities for the remaining eight bits were ex-

haustively searched through a software DES implemen-

tation. If the cipher text resulting from the key guess

matched the uncorrupted cipher text output then the

key that was used to create it was indeed the original

key.

For the first attack Figure 6 displays the results.

Out of the 10,000 simulations run, there were 7,554 that



8 Nathanael Weidler et al.

7554

2446

Recoverable Keys Unrecoverable Key

Fig. 6 Attack 1 results showing that on a pipelined DES
circuit 7,554 out of 10,000 keys were recoverable assuming
that the faults in all other rounds can be disregarded. This
proposed Trojan is 5x smaller than the large Trojan proposed
by [11], and has a success rate of 191x their small Trojan.

resulted in a key that was easily recoverable. The results

of the second attack can be seen in Figure 7. Out of

the 10,000 simulations run there were 4,437 recoverable

keys. It should be noted that the completely random

nature by which we selected the 255 points in the second

attack actually biased key recovery towards failure. In

an actual obfuscated circuit the LSB of the fourteenth

round could not have been confused with every other

bit in the entire design. Still, our observed success rate

of approximately 75% (191/256) and 44% (112/256) is

far better than the 1/256, or 0.4% success rate that was

discussed in [11].

The other alternative [11] offered has a guaranteed

success rate but requires a Trojan that has 1280 gates

(excluding trigger logic). While the an acceptable Tro-

jan size was not discussed in the original work, the Tro-

jan proposed here would be only 256 gates excluding

trigger logic. This Trojan is 5x smaller in size, which is

again a substantial improvement.

4.6 Discussion

The results above show a significant improvement us-

ing the metrics that the authors of [11] used. However,

these results would have been even better given realis-

tic assumptions not utilized because of our inability to

complete the wire lifting procedure. For example, when

the actual architecture of the circuit is considered, the

bits that could be indistinguishable from the LSB of

the fourteenth round are output bits 1–15 of the same

round. In this case instead of only inducing a known

fault on a single bit, we would be able to induce it in

16 known bits in the fourteenth round. The 240 bits in

the other rounds that would be indistinguishable from

the LSB of the fourteenth round are output bits 0-15 of

each of the other fifteen rounds, and these would have

4437

5563

Recoverable Keys Unrecoverable Key

Fig. 7 Attack 2 results showing that on a pipelined DES
circuit 4,437 out of 10,000 keys were recoverable. This attack
forced a very pessimistic view for the attacker, which would
not be reasonable. It allowed any bit in the circuit to be
corrupted by the Trojan. This pessimistic view was given to
show that even given the most possible pessimistic assump-
tions the proposed Trojan was still 5x smaller than the large
Trojan proposed by [11], and has a success rate of 112x their
small Trojan. If the wire lifting procedure had converged, this
pessimistic view would not have been necessary.

no effect on the outcome of the attack. If this assump-

tion was allowed to be made, the success rate of the

Trojan would be 100%. Fault injection analysis teaches

that the greater the number of known bits that have

a fault induced on them, the easier it is to recover the

key [24].

5 Weaknesses Extended to AES

Hardware Trojans can also be created to make AES

circuits vulnerable, even after the wire lifting proce-

dure has been performed. The example of AES being

vulnerable is important because it extends the previ-

ous attack to another class of cryptographic algorithms

(those based on SPN). For our purposes, 128-bit AES

was considered but the attack can be extended to 192

and 256-bit AES, as well. It must be reiterated that be-

cause the publicly available wire lifting procedure failed

to successfully terminate, several pessimistic assump-

tions were made.

5.1 AES Attack Background

The original proposal for AES was submitted to the

National Institute of Standards and Technology in 1999

describes the Rijndael algorithm, a symmetric block ci-

pher [5]. It was adopted as a standard in 2001 [6]. The

standard allows for the processing of 128 bit data blocks

with an option of key sizes of 128, 192 or 256 bits. The

128-bit data is organized into a 2D array of 4x4 bytes

called the State. For a 128-bit key operating on 128-bit



On the Limitations of Obfuscating Redundant Circuits in Frustrating Hardware Trojan Implantation 9

SubBytes

ShiftRows

MixColumns

AddRoundKey

Partitioning

SubBytes

ShiftRows

MixColumns

AddRoundKey

Fig. 8 After partitioning the rounds to remove wires be-
tween their components, there would be nine identical Mix-
Columns circuits, ten identical circuits of SubBytes followed
by ShiftRows, and ten AddRoundKey circuits.

data, AES has ten rounds. Rounds 1-9 are all identical

with their State manipulation steps as follows [6]:

1. Perform byte substitutions.

2. Shift the rows of the matrix.

3. Perform the mix column transformation.

4. Add the round key to the result.

The final round, round ten performs steps 1, 2 and 4,

but leaves out step 3, the mix column transformation.

This is an important distinction from DES which has 16

identical rounds [24]. This difference is important be-

cause in [11] the idea of manually partitioning the cir-

cuit and removing the wires between the rounds is the

first step of the procedure, which creates a k-security of

16. With AES if the connections between the rounds are

broken, no such k-security is achieved because the final

round is not identical to the others. With this in mind,

we would suggest partitioning the AES circuit in a way

that would allow for the greatest k-security as was done

in the example of DES. We submit that the best case

scenario is for removing the wires between all rounds,

as well as between steps 2 and 3 and between steps 3

and 4 before performing the wire lifting procedure, as

seen in Figure 8. This is important to do as otherwise

the final round could be easily attacked, given that it

would have a recognizably distinct footprint from the

other rounds.

After this partitioning procedure is completed the

final round circuit of SubBytes to ShiftRows, as well as

the AddRoundKey circuit, is ten-secure, as there would

be nine other rounds in which those identical circuits

existed. We would now pass the partitions through the

wire lifting procedure with a goal of having each cir-

cuit be x-secure. Note that in order to add anonymity

to the final round, we have isolated the AddRoundKey

circuit which is by default 128-secure in each round (this

is because that circuit is made up entirely of 128 XOR

gates). The whole circuit, then, is in fact 1280-secure.

There are 1279 other gates in the circuit which cannot

be distinguished from a particular XOR gate in the final

AddRoundKey circuit. 127 of these 1279 gates also ex-

ist in the final AddRoundKey circuit. We make these

assumptions about the final k-security of the circuit as

if the wire lifting procedure had run efficiently.

5.2 AES Attack Outline

In order to recover the 128-bit key of AES, we pro-

pose to attack the circuit in the final round during the

AddRoundKey step (when the round key is added in).

That is, if we can implant a hardware Trojan that can

cause a fault that holds a bit to 0 in at least 64 of the

128 bits that are XOR’d with the round key, those bits

of the round key can be revealed. The final bits of the

key (up to 64 bits) can be brute forced by an exhaustive

search until the full key is recovered. After the attack

the remaining bits of the round key would be guessed

and the round key would be propagated through the

AES key schedule in reverse to reveal the key. That key

would be used to encrypt a known plaintext-ciphertext

pair. If the ciphertext encrypted under the guessed key

matched the original ciphertext then the guessed key is

correct. If not, then the process starts over by guessing

the remaining bits in the final round key, again.

This attack uses the properties of the XOR operation:

A XOR B = B where A = 0. Any bit of the final round

key will be revealed if it is XOR’d with 0. If our hardware

Trojan affects random bits that are XOR’d with the final

round key, we do not need to attack specific bits. In

fact, we do not even need to know how many bits were

attacked, we only need enough plaintexts to recover all

the bits. The following is an illustrative example.

Let us consider the least significant byte of the fi-

nal step, adding the round key, of the final round of an

AES encryption. Assume that two bits of this byte are

held low when a hardware Trojan is active but it is not

known which bits are affected by the Trojan. Given that

enough ciphertext pairs (C,C’), where C is a correctly

encrypted ciphertext and C’ is a ciphertext encrypted

while the hardware Trojan was active, and they are

both the encryption of the same plaintext, we can de-

termine which bits are associated with the Trojan and

the value of those bits of the round key. For example,

assume that the least significant byte of the round key

(from here on referred to as “the key”) is 10101010 and

the least significant byte of the State being XOR’d with

the key is 11110000. In this case, C = 01011010 and

C’ = 01001010. The errored byte E is calculated by C

XOR C’, which in this case yields 00010000, where a 1

indicates a bit that was affected by the Trojan.

Now, using E as a mask over C’ to find the known

values of the key, which are indicated in bold, 0100101.



10 Nathanael Weidler et al.

We see that bit four (starting with zero on the right)

of the round key is 0 and we have recovered one of the

two bits. Continuing this example, after several more

ciphertext pairs, in which E = 00000000, we find the

(C,C’) pair (00101101, 00101111) and E = 00000010.

Again using E as a mask over C’ to select the revealed

portion of the key, this indicates that bit one of the

key is 1. At this point we have recovered both bits of

the round key that this Trojan allows; i.e., we discov-

ered that the round key looks like ---0--1-. More bits

affected by the Trojan would have revealed more key

bits.

The attack above is similar to the attack on the DES

circuit in that the Trojan consists of AND gates designed

to hold the bits they affect to 0 when activated. Like

the attack on the DES circuit, a pipelined AES im-

plementation is used. The entire Trojan is activated at

the same time, for a single clock cycle, so if gates of

the Trojan affect bits in rounds besides the final round,

they will not change the ciphertext output that we are

concerned with. Only the gates of the Trojan that lie

within the final round will cause any change to that

ciphertext.

5.3 AES Attack Implementation

A pipelined implementation of AES was obtained from

opencores.org [9], in order to start with an unbiased im-

plementation. This design also came with a test bench

that was utilized for simulation. The circuit and test

bench were modified only to add the hardware Trojan—

in no other way was the circuit tampered with.

The k-security of any of the XOR gates in the final

round during the AddRoundKey step is 128 with re-

spect to that round and 1280 with respect to the entire

circuit. If our intention was to attack a specific XOR gate

we would need a hardware Trojan to contain 1280 AND

gates to be sure the crucial gate was attacked. Instead,

we only want enough gates to be attacked so that we

can recover the key. We claim that at least 64 of these

XOR gates in the final round must be attacked, leaving

up to 64 bits of the key to be exhaustively searched.

In order to decide how large to make the Trojan, we

simulated different Trojan sizes 10,000 times. For each

simulation we kept the number of Trojan bits constant

but randomly selected their locations. This is akin to

seeing the netlist that an attacker has access to but not

knowing which of the 1280 XOR gates fall within the fi-

nal round. Instead of attacking each gate the attacker

would select a number of them at random to attack.

These simulations are used to calculate the probabil-

ity of success with varying Trojan sizes. The sizes of

Trojans simulated were 640 bits, 700 bits and 800 bits.

5340

4660

Recoverable Keys Unrecoverable Key

Fig. 9 Results for the 640 gate Trojan attacking AES are
given. Out of 10,000 simulations, 5,340 resulted in recoverable
keys. This success rate can be improved by increasing the size
of the Trojan.

A Python program was written to generate the 10,000

locations of each bit of the Trojan for each of the three

Trojan sizes. The Verilog code was modified to incor-

porate these locations and the resulting circuits were

simulated with the (C,C’) pairs being written to a

file. Those (C,C’) pairs were then analyzed by another

Python program to determine the number of bits of the

round key that were discovered as well as how many

pairs were needed to find those bits.

5.3.1 640-bit Trojan Results

The 640-bit hardware Trojan was selected as a starting

point as it was half as large as the 1280 which would

affect all gates. The results show that in 5,340 of the

10,000 simulations at least 64-bits of the key were recov-

ered. The maximum number of round key bits recovered

was 85 and the minimum number recovered was 43. The
probability of success for this Trojan size was 53.4%. All

bits of the round key were recovered using at most six

(C,C’) pairs. These results can be seen in Figure 9.

5.3.2 700-bit Trojan Results

A small increase in Trojan size revealed an increased

probability of success: 8,938 simulations resulted in 64

bits or more of the round key being revealed. This is

an 89.38% chance of success with this Trojan size. The

maximum number of round key bits recovered was 92

and the minimum was 52. These bits were again found

using at most six (C,C’) pairs. These results can be

seen in Figure 10.

5.3.3 800-bit Trojan Results

This final simulation revealed that at least 64 bits of

the round key were recovered in 9,992 of the simula-

tions which is a 99.92% chance of successfully recov-



On the Limitations of Obfuscating Redundant Circuits in Frustrating Hardware Trojan Implantation 11

8939

1061

Recoverable Keys Unrecoverable Key

Fig. 10 Results for the 700 gate Trojan attacking AES are
given. By increasing the Trojan size by 60 gates, or just over
10% we were able to increase the recoverable keys by 67%
over the 640 gate Trojan. Out of 10,000 simulations, 8,938
resulted in recoverable keys.

9992

8

Recoverable Keys Unrecoverable Key

Fig. 11 Results for the 800 gate Trojan attacking AES are
given. Out of the 10,000 simulations run, 9,992 had recov-
erable keys. This is nearly a 100% success rate. This would
be the maximum Trojan size needed for a highly successful
Trojan.

ering the key. The minimum number of bits recovered

in this simulation was 61 and the maximum number of

bits was 101. The maximum number of bits recovered

would only leave 27 bits of search space or 134,217,728

combinations, required to discover the full key. This is a

problem a typical modern-day personal computer could

easily solve. The maximum number of (C,C’) pairs re-

quired to recover each bit was again six. These results

can be seen in Figure 11.

5.4 Method applied to the DES circuit

A similar Trojan that was used against the AES cir-

cuit could be modified to attack the DES circuit previ-

ously described. In this scenario the hardware Trojan

would attack the entire left hand output of the four-

teenth round, holding it to zero. This would require 32

AND gates per round for a total of 512 AND gates. This

would allow us to discover the round key for the 16th

round with 100% certainty using only a single plaintext.

Fig. 12 Rounds fifteen and 16 of DES are shown. It is illus-
trated that if a hardware Trojan caused the left block output
of round fourteen to be zeros then the only unknown for round
16 is the round key.

This works because if the left block output of the

fourteenth round is held to zeros, then the right block

input to the fifteenth round would also be zeros and the

left block input to the 16th round would be zeros, as

well. Both the right and left block outputs of the 16th

round are known because they can be reversed through

the final permutation to reveal them. The right block

input to the 16th round would also be known because

it is equal to the left output. This is illustrated in Fig-

ure 12. Knowing all inputs and outputs to the round,

the only unknown would be the round key which could

easily be determined by going through the algorithm in

reverse. Upon discovering the round key, the remaining

eight bits of the secret key could be discovered by an

exhaustive search, as described earlier.

This Trojan to attack DES would be 512 gates large,

which is half the size of the original Trojan suggested by

Imeson et al., and it would have a 100% success rate.

6 Conclusion and Future Work

We have demonstrated that the obfuscation methods

set forth in [11] do not provide the claimed security for

Feistel or SPN structured circuits. This is because these

circuits contain highly redundant logic, which makes

them vulnerable to hardware Trojan attacks even after

the wire lifting procedure has been carried out, due to

the fact that even if a desired gate cannot be attacked

directly, there is enough redundancy in these types of

circuits to allow for an attack to be successful. In these

cases, k-security gives a false sense of how secure the cir-

cuit is because multiple gates in a redundant, pipelined

circuit can be attacked simultaneously without the ex-

traneous gates affecting the outcome of the attack, as

they are attacked during a different pipeline stage.



12 Nathanael Weidler et al.

Our work shows that it is difficult to prove that any

method of split circuit manufacturing has the same ben-

efits for arbitrary classes of circuits. It is therefore ben-

eficial when a class of circuits can be identified as being

an exception to the rule. Future split manufacturing ap-

proaches must consider redundant circuits, specifically.

That is, once a new method is identified it must be

tested against redundant circuits to see if the claims of

security still hold for those types of circuits.

Future work would include investigating other types

of redundant circuits in order to determine whether

cryptographic circuits are the only types of highly re-

dundant circuits for which the wire lifting procedure

does not provide the asserted amount of security. Other

classes of circuits may also be identified as not being

subject to the claims of increased security provided by

split manufacturing.

Future work should also include investigating ad-

vances made to the original paper, by other authors to

ensure the techniques described here continue to allow

Trojan implantation. There is continuing research on

improving split manufacturing to further obfuscate the

original design by inserting dummy wires and cells [14].

This would make the methods presented here more chal-

lenging, but still achievable, with perhaps slightly larger

Trojans.

References

1. Baigneres, T., Vaudenay, S.: Proving the security of
aes substitution-permutation network. In: International
Workshop on Selected Areas in Cryptography, pp. 65–81.
Springer (2005)

2. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.:
Fault injection attacks on cryptographic devices: Theory,
practice, and countermeasures. Proceedings of the IEEE
100(11), 3056–3076 (2012)

3. Biham, E., Shamir, A.: Differential fault analysis of secret
key cryptosystems. In: Annual International Cryptology
Conference, pp. 513–525. Springer (1997)

4. Committee on Armed Services, United States Senate: In-
quiry into counterfeit electronic parts in the department
of defense supply chain (1999). URL http://www.armed-
services.senate.gov/Publications/Counterfeit%20Electro
nic%20Parts.pdf

5. Daemen, J., Rijmen, V.: Aes proposal: Rijndael (1999)
6. Daemen, J., Rijmen, V.: Specification for the advanced

encryption standard (aes). Federal Information Process-
ing Standards Publication 197 (2001)

7. Girija, R., Singh, H.: A new substitution-permutation
network cipher using walsh hadamard transform. In:
Computing and Communication Technologies for Smart
Nation (IC3TSN), 2017 International Conference on, pp.
168–172. IEEE (2017)

8. Hasegawa, K., Oya, M., Yanagisawa, M., Togawa, N.:
Hardware trojans classification for gate-level netlists
based on machine learning. In: On-Line Testing and Ro-
bust System Design (IOLTS), 2016 IEEE 22nd Interna-
tional Symposium on, pp. 203–206. IEEE (2016)

9. Hsing, H.: tiny aes (2015). URL
https://opencores.org/project/tiny aes

10. Imeson, F.: circuit security (2017). URL
https://github.com/fcimeson/circuit security

11. Imeson, F., Emtenan, A., Garg, S., Tripunitara, M.: Se-
curing computer hardware using 3d integrated circuit
({IC}) technology and split manufacturing for obfusca-
tion. In: Presented as part of the 22nd {USENIX} Se-
curity Symposium ({USENIX} Security 13), pp. 495–510
(2013)

12. Johnson, A.P., Patranabis, S., Chakraborty, R.S.,
Mukhopadhyay, D.: Remote dynamic clock reconfigura-
tion based attacks on internet of things applications. In:
Digital System Design (DSD), 2016 Euromicro Confer-
ence on, pp. 431–438. IEEE (2016)

13. Kim, C.H., Quisquater, J.J.: Faults, injection methods,
and fault attacks. IEEE Design & Test of Computers
24(6), 544–545 (2007)

14. Li, M., Yu, B., Lin, Y., Xu, X., Li, W., Pan, D.Z.: A
practical split manufacturing framework for trojan pre-
vention via simultaneous wire lifting and cell insertion.
IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 38(9), 1585–1598 (2018)

15. Maity, G., Bhaumik, J., Kundu, A.: A new spn type ar-
chitecture to strengthen block cipher against fault attack.
IJ Network Security 20(3), 455–462 (2018)

16. Malekpour, A., Ragel, R., Ignjatovic, A., Parameswaran,
S.: Trojanguard: Simple and effective hardware trojan
mitigation techniques for pipelined mpsocs. In: Proceed-
ings of the 54th Annual Design Automation Conference
2017, p. 19. ACM (2017)

17. Peng, J., Tan, C.H., Wang, Q., Gao, J., Kan, H.: More
new classes of differentially 4-uniform permutations with
good cryptographic properties. IEICE Transactions on
Fundamentals of Electronics, Communications and Com-
puter Sciences 101(6), 945–952 (2018)

18. Rajendran, J.J., Sinanoglu, O., Karri, R.: Is split man-
ufacturing secure? In: Proceedings of the Conference on
Design, Automation and Test in Europe, pp. 1259–1264.
EDA Consortium (2013)

19. Salmani, H.: Hardware trojan attacks and countermea-
sures. In: Fundamentals of IP and SoC Security, pp.
247–276. Springer (2017)

20. Salmani, H., Tehranipoor, M., Plusquellic, J.: New design
strategy for improving hardware trojan detection and re-
ducing trojan activation time. In: Hardware-Oriented
Security and Trust, 2009. HOST’09. IEEE International
Workshop on, pp. 66–73. IEEE (2009)

21. Samimi, M.S., Aerabi, E., Kazemi, Z., Fazeli, M., Pa-
tooghy, A.: Hardware enlightening: No where to hide your
hardware trojans! In: On-Line Testing and Robust Sys-
tem Design (IOLTS), 2016 IEEE 22nd International Sym-
posium on, pp. 251–256. IEEE (2016)

22. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata,
T.: The 128-bit blockcipher clefia. In: International
Workshop on Fast Software Encryption, pp. 181–195.
Springer (2007)

23. Tehranipoor, M., Koushanfar, F.: A survey of hardware
trojan taxonomy and detection. IEEE design & test of
computers 27(1) (2010)

24. Tunstall, M.J.M.: Fault Analysis in Cryptography.
Springer (2012)

25. U.S. department of commerce bureau of industry and se-
curity office of technology evaluation: Defense industrial
base assessment: Counterfeit electronics (1999). URL
http://www.bis.doc.gov/defenseindustrialbaseprograms/



On the Limitations of Obfuscating Redundant Circuits in Frustrating Hardware Trojan Implantation 13

osies/defmarketresearchrpts/final counterfeit electronics
report.pdf

26. Usselmann, R.: DES/Triple DES IP Cores (2009). URL
http://opencores.org/project/des

27. Vaidyanathan, K., Das, B.P., Pileggi, L.: Detecting relia-
bility attacks during split fabrication using test-only beol
stack. In: Design Automation Conference (DAC), 2014
51st ACM/EDAC/IEEE, pp. 1–6. IEEE (2014)

28. Vaidyanathan, K., Das, B.P., Sumbul, E., Liu, R., Pileggi,
L.: Building trusted ics using split fabrication. In: 2014
IEEE international symposium on hardware-oriented se-
curity and trust (HOST), pp. 1–6. IEEE (2014)

29. Vaidyanathan, K., Liu, R., Sumbul, E., Zhu, Q.,
Franchetti, F., Pileggi, L.: Efficient and secure intellec-
tual property (ip) design with split fabrication. In: 2014
IEEE international symposium on hardware-oriented se-
curity and trust (HOST)n, pp. 13–18. IEEE (2014)

30. Wang, M.T.C.: Introduction to Hardware Security and
Trust. Springer, 233 Spring Street, New York, NY 10013
(2012)

31. Wang, Y., Chen, P., Hu, J., Li, G., Rajendran, J.: The
cat and mouse in split manufacturing. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 26(5),
805–817 (2018)

32. Xie, Y., Bao, C., Srivastava, A.: Security-aware design
flow for 2.5 d ic technology. In: Proceedings of the 5th
International Workshop on Trustworthy Embedded De-
vices, pp. 31–38. ACM (2015)

33. Yoshimura, M., Bouyashiki, T., Hosokawa, T.: A hard-
ware trojan circuit detection method using activation se-
quence generations. In: Dependable Computing (PRDC),
2017 IEEE 22nd Pacific Rim International Symposium
on, pp. 221–222. IEEE (2017)


