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ABSTRACT

The reliability of multi-processor systems-on-chip (MPSoCs)
is affected by several inter-dependent system-level and phys-
ical effects. Accurate and fast reliability modeling is a pri-
mary challenge in the design and optimization of reliable
MPSoCs. This paper presents a reliability modeling frame-
work that integrates device-, component-, and system-level
models. This framework contains modules for electromigra-
tion, time-dependent dielectric breakdown, stress migration,
and variable-amplitude thermal cycling. A new statistical
reliability distribution is proposed for accurate characteri-
zation of components containing too few devices for an ex-
treme value distribution to be appropriate. A hierarchical
system-level survival lattice based Monte Carlo technique is
used to estimate the temporal fault distributions of MPSoCs
that use arbitrary static and dynamic reliability-enhancing
redundancy schemes. Physical process variation, which may
have a significant impact on MPSoC reliability, is consid-
ered in the model. The proposed modeling technique has
5% average error in mean time to failure and reduces sim-
ulation time by nearly 3 orders of magnitude relative to a
non-hierarchical Monte Carlo technique.

Categories and Subject Descriptors: C.4 [Performance
of Systems]: Reliability, availability, and serviceability; Fault
tolerance.

General Terms: Reliability, Performance

1. INTRODUCTION

Integrated circuit (IC) process scaling has resulted in de-
creasing minimal feature sizes, increasing temperatures, and
increasing current densities, all of which increase the rate of
wear due to lifetime fault processes such as electromigration,
time-dependent dielectric breakdown, stress migration, and
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thermal cycling. As a result of scaling from a 180nm to
65 nm process technology, temperature generally increases
by 14°C |1]. Many failure mechanisms are exponentially de-
pendent on temperature; a 10-15°C increase in temperature
may result in less than half the original lifetime [2].

Reliability analysis and enhancement techniques play key
roles in improving IC lifetime, and can be used at various ab-
straction levels. Considering reliability during system-level
design has the potential to yield greater improvements in
lifetime at lower costs than considering only lower-level relia-
bility enhancement techniques. System-level decisions, such
as component placement, power state control, and functional
unit duplication can significantly impact IC temperatures,
current density profiles, and redundancies, thus influencing
IC reliability.

Empirically developing and evaluating system-level relia-
bility models are challenging tasks due to the number and
duration of tests required to determine the system-level tem-
poral fault distributions, and the dependence of these dis-
tributions on parameters such as temperature and current
density. Though a large amount of work exists on modeling
reliability for individual devices, current system-level relia-
bility models have substantial limitations. Coskun et al. |3]
and Rosing, Mihic, and De Micheli |4] developed MPSoC re-
liability models based on exponential component temporal
fault distributions. Exponential distributions imply a con-
stant failure rate throughout the MPSoC lifetime. They are
appropriate when only early failure is considered, but are in-
sufficient for MPSoCs with long planned lifetimes, for which
wear is important. Srinivasan et al. proposed a reliability-
aware microprocessor design model |5, 6], which is based on
lognormal component temporal fault distributions. Monte
Carlo simulation was used to derive system mean time to
failure (MTTF) in the presence of system-level redundancy.
Gu et al. |7] employed the same assumption about compo-
nent temporal fault distributions but used Min-Max approx-
imation to estimate the system MTTF. The use of lognormal
distributions for components composed of many devices may
cause substantial error in system MTTF estimation, as will
be shown in Section 7.3. Karl et al. [8] estimated system-
level reliability under the assumption that all devices are
essential. This approach is accurate but lacks the flexibility
to model complex, fault-tolerant designs. Moreover, the in-
creasing number of devices per system makes flat full-chip
simulation too time consuming for use in reliability-aware
MPSoCs synthesis and optimization.

In this paper, we present a system-level reliability mod-
eling framework that builds on knowledge of device-level
temperature- and current-dependent temporal fault distri-
butions and component redundancy to support accurate and
efficient system-level reliability estimation. In particular,



the proposed infrastructure supports variable failure rates,
variable component temporal fault distribution functions, as
well as variable-amplitude and high-frequency thermal cycle
modeling. It models components containing devices with
lognormal or Weibull device failure distributions, appropri-
ately adjusts component temporal fault distribution func-
tions based on the number of devices in the component, and
handles intra- and inter-die process variation. The proposed
modeling technique is validated by comparing the estimated
system MTTFs with those produced by a (very slow but ac-
curate) full-system device-level Monte Carlo technique. Sim-
ulation results show that the proposed model has 5% error
on average and decreases simulation time by almost 3 or-
ders of magnitude compared to the full-system device-level
Monte Carlo method.

The rest of this article is organized as follows. Section 2
gives a high-level overview of our reliability modeling process
and describes the resulting model. Section 3 provides back-
ground on device-level failure mechanisms. Section 4 pro-
vides equations to calculate temporal failure distributions
under time-varying temperatures and describes an accurate
thermal cycling model. Section 5 describes a method to
derive component-level reliability models from device-level
models. Section 6 describes the Monte Carlo technique used
to estimate both static and dynamic system-level reliability.
Section 7 evaluates the accuracy and efficiency of the pro-
posed modeling technique. Section 8 concludes the paper.

2. MODELING INFRASTRUCTURE

The proposed system-level modeling framework is hier-
archical. Three abstraction levels are used: device, compo-
nent, and system. A device is defined as the smallest discrete
circuit element that is vulnerable to failure, e.g., a transis-
tor, a wire, or a via. A component is composed of numerous
critical devices; the failure of any device causes the compo-
nent to fail. A system is a group of components connected
in an arbitrary structure; some components may be redun-
dant. Note that functional units with internal redundancy
can be modeled within this framework by treating them as
multiple redundant components. At the device level, tempo-
ral failure mechanisms are characterized by empirical test-
ing. The device-level temporal distributions for many failure
processes are well understood: we assume they are known.
In contrast, component- and system-level failure distribu-
tions are expensive to empirically determine. It is there-
fore our goal to automatically construct component- and
system-level reliability models starting from known device-
level models and knowledge of system-level redundancies.

The flow of our multi-level system reliability modeling
technique is shown in Figure 1. Device specifications consist
of distribution type, shape parameters, as well as reference
MTTF and voltage. Component specifications consist of
component device counts and process variation parameters.
These specifications are used in our modeling frameworks to
obtain accurate component temporal failure distributions.
The simplified component distribution supports estimation
of component reliability at any time given a temperature
and voltage time series. Component reliability information,
initial wear, still functioning system components, a list of
valid states in the system survival lattice, and expected life-
time are used to determine the time of the next component
failure. A survival lattice is a description of all the fault
conditions the system can tolerate |9]. Exzpected lifetime is
a random variable generated for each component at the be-
ginning of each Monte Carlo trial; a component fails when
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Figure 1: Reliability modeling infrastructure.

its wear exceeds its expected lifetime. If the system survives
the failure of a component, the system structure, component
wear, and thermal profile are updated. Note that adapta-
tion in workload distribution and power management state
can cause thermal and current density profiles to change af-
ter the failures of individual components. If, instead, the
system fails, the Monte Carlo trial ends.

3. DEVICE-LEVEL FAILURE
MECHANISMS BACKGROUND

This section reviews the device lifetime failure mecha-
nisms that are presently dominant for ICs: electromigration,
time-dependent dielectric breakdown, stress migration, and
thermal cycling. This background material will be useful in
explaining the proposed reliability modeling techniques.

1. Electromigration (EM) refers to dislocation of metal
atoms caused by momentum imparted by electrical
current in wires and vias. The MTTF due to elec-
tromigration is given by the following equation |10,
11]:

Ea
MTTF gy = %e#, (1)
where Agy is a constant determined by the physical
characteristics of the metal interconnect, J is the cur-
rent density, Fa,,, is the activation energy for electro-
migration, n is an empirically determined constant,
is the Boltzmann constant, and T is the temperature.



2. Time-dependent dielectric breakdown (TDDB) refers
to deterioration of the gate oxide layer. Gate current
due to hot electrons causes defects in the oxide, which
eventually form a low-impedance path and cause the
transistor to permanently fail. This effect is strongly
influenced by temperature, and is increasing with the
reduction of gate oxide dielectric thickness and non-
ideal supply voltage reduction. The MTTF due to
time-dependent dielectric breakdown is given by the
following equation [10, 9]:

1 (a—bT) A+B/§:+CT

MTTF rppp = ArppB (V) e )

where Arppp is a fitting constant, V is the supply
voltage, and a,b, A, B, and C are empirical fitting pa-
rameters.

3. Stress migration is caused by the directionally biased
motion of atoms in metal wires due to mechanical
stress caused by thermal mismatch among metal and
dielectric materials. The MTTF resulting from stress
migration is given by the following equation [10]:

_,, Pasm
MTTF sy = Asu|To —T| e =T, ®3)
where Ags is a fitting constant, Tp is the metal deposi-
tion temperature during fabrication, T is the run-time
temperature of the metal layer, n is an empirically de-
termined constant, and E,g,, is the activation energy.

4. Thermal cycling refers to wear caused by thermal stress
resulting from mismatched coefficients of thermal ex-
pansion for adjacent material layers; run-time temper-
ature variation results in inelastic deformation, even-
tually leading to failure [12]. The number of cycles
to failure (Nr¢) can be calculated using a modified
Coffin-Mason equation [13]:

Eq

Nre = Arc (6T — Tth)_be“Tf‘jf@ ) (4)
where Apc is an empirically determined constant, §7
is the thermal cycle amplitude, Ty, is the temperature
at which inelastic deformation begins, b is the Coffin-
Manson exponent constant, E,,, is the activation en-
ergy, and T, is the maximum temperature during
the cycle. Note that §7 can change between cycles.

The above empirical MTTF or cycles to failure equations
estimate the lifespans of individual devices. However, they
cannot be directly used in component- or system-level anal-
ysis. Device temporal failure densities are usually character-
ized using Weibull and lognormal distributions. Experimen-
tal results show that TDDB failures usually have Weibull
distributions |14] and EM failures have lognormal distribu-
tions |15, 16]. The distributions for stress migration and
thermal cycling are not known with certainty due to the
scarcity of experimental data. We assume that they have
Weibull distributions in this work. If future research indi-
cates that they have other distributions, the proposed reli-
ability modeling infrastructure can be easily adjusted. The
reliability (i.e., probability of surviving until a particular
time) of a device with Weibull distribution can be calcu-
lated using the following equation:

,(1)5

R(t)=e \n/ | (5)
where 7 is the scale parameter and [ is the shape parameter.
For devices with lognormal distributions, the reliability can

be calculated using

1 1 In(t) — p
R(t)==-— - erf | —=—— 6
=55 et (M22). ©)
where p is the scale parameter, o is the shape parameter,
and erf is the error function.

4. TEMPERATURE VARIATION

Modern ICs typically employ dynamic thermal, power,
and performance management techniques such as dynamic
voltage and frequency scaling. As a result, reliability-related
parameters such as temperature, voltage, and frequency may
vary over time. In the rest of the paper, we will focus on
modeling temporal and spatial temperature variation since
they have strong impacts on most of the important failure
mechanisms. The same modeling techniques can be easily
applied to other parameters. Modeling temperature vari-
ation poses two challenges, (1) steady-state wear estima-
tion and (2) thermal cycling wear estimation, which this
section addresses. These methods are used in both device-
and component-level modeling steps in our framework.

4.1 Reliability Computation

In the presence of temperature variation, using Equa-
tion 5 or 6 to compute reliability can lead to large errors.
In this section, we present a method for determining relia-
bility given arbitrary temporal temperature variation. We
focus our discussion on device-level modeling. However, the
method can be readily applied to component-level modeling.

We start by assuming Weibull device temporal failure dis-
tributions (lognormal distributions will be discussed later).
Suppose the temperature time series is represented by a se-
quence of tuples [(t7, T1) - - - (¢, Tj)], where ¢; is the interval
duration and T} is the temperature during the ith time inter-
val. In the absence of process variation, the shape param-
eter is constant (we relax this assumption in Section 5.1).
Therefore, temperature fluctuation only changes the scale
parameter, which is 7 for Weibull distributions and u for
lognormal distributions. For each time interval, the scale
parameter is calculated as follows:

MTTF,

r(1+3)
where MTTF; is the calculated MTTF for temperature T3,
(3 is the Weibull shape parameter, and I is the gamma func-
tion. The change in scale parameter between time intervals
causes discontinuity in the temporal failure probability den-
sity function. Therefore, for two consecutive time segments
t; and t;41, when the device temperature changes from 7; to
Ti+1, the duration of the previous time segment should be
adjusted according to the new distribution parameters. At
time ¢ when the device temperature changes, the following
equation must hold:

Ri(t) = Ri (1), (8)
where R;(t) is the reliability at time ¢ for scale parameter
i, and t’ is defined as the time resulting in wear equivalent
to that at t if the scale parameter were changed to 7;41.
Assuming that the reliability at time to = 22;11 tr is R,
since Equation 8 must be satisfied, at time t = tg + t; we
have

i = (7)

= ((_ 1n(3))%+%)ﬂ — e ((— ln(R))%+n,ﬁ1 )B‘

(9)

By solving Equation 9, we can express t; as a function of ¢;:
t = Ty, (10)

7
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Figure 2: Example (a) temperature time series and
(b) application of rainflow counting method.

By applying Equation 10 to the entire temperature time
series, the reliability at time ¢ = >~7_, ¢; can be calculated
using the following equation:
j t; \B

R(t) = e (Zimaa)”, (11)
Given stationary temperature and voltage characteristics, a
sequence of sufficient length may be used to represent typical
wear conditions. Since the sequence is short relative to the
total lifespans of devices, which is typically tens of years,
we can calculate the approximate reliability for devices with
Weibull temporal failure distributions using the following
equation:

t; \ B
()
Rweun(t) = e . (12)

The same analysis can be used for lognormal distributions.
1

>
1 In(t) + In (ﬁ)
Rlognormal(t) = 5 - 5 erf 597

where o is the lognormal shape parameter and u; is the
lognormal scale parameter for the ith time segment. p; can
be calculated using the following equation:

2
i = In (MTTF;) — % (14)

Equations 12 and 13 allow the computation of device re-
liability given time-varying temperatures. However, they
cannot be applied to the thermal cycling failure mechanism,
which requires memory for accurate modeling.

4.2 Thermal Cycling Model

A thermal cycle occurs when the temperature starts from
some initial value, reaches an extreme point (either a local
minimum or a local maximum), and returns to the starting
value. The thermal cycling MTTF depends strongly on the
peak temperature and cycle amplitude. A cycle can be de-
noted by a valley-peak (or peak-valley) pair. The peak and
valley that form a cycle need not be adjacent to each other.

Consider Figure 2(a), which shows a time series of temper-
atures in which the P labels denote peaks and V labels de-
note valleys. There are three cycles: (V0, P0), (V1, P1), and
(Vo,P1). (V1,P1)and (VO, P1) overlap each other. Count-
ing them both in a naive way, i.e., double-counting, may lead
to underestimation of MTTF. In contrast, if only neighbor-
ing valleys and peaks are considered, (V0, P0) and (V1, P1)
will be counted. This would result in a 2.7x overestimation

of MTTF due to neglecting the large cycle (V0, P1). Proper
estimation of wear due to variable-amplitude thermal cycling
is complex.

In previous system-level reliability modeling work, it is
typically assumed that the temperature varies slowly over
time and has regular pattern that simplify cycle counting
by eliminating overlapping cycles |3, 17]. However, in real
applications, high-frequency and irregular temperature vari-
ation can occur. An accurate thermal cycling model should
avoid double-counting cycles and appropriately count over-
lapping cycles.

4.3 Rainflow Counting Method

Wear due to thermal cycling appears to be primarily caused
by inelastic deformation of materials due to temperature
changes of connected materials with dissimilar coefficients of
thermal expansion, i.e., thermal cycling produces repeated,
potentially-inelastic deformation when connected materials
expand and contract at different rates. This is analogous
to the variable-amplitude stress loading problem |18]. Rain-
flow counting is the most widely used cycle counting method
in material science and is commonly accepted as the best
method for estimating the damage of a material due to ran-
dom loading fluctuation [19].

An example of the rainflow counting algorithm is illus-
trated in Figure 2(b). Each peak serves as a source of water
that flows down along the slope. When a water flow is ter-
minated, a half cycle is counted. A water flow is terminated
when it reaches the end of time, e.g., A (V5, P4); merges
with another flow, e.g., B (V4, P5); or comes opposite a
maximum more positive than the maximum from which it
initiated, e.g., C (V2, P2) |20]. Two half cycles with identical
amplitudes and peak temperatures but opposite directions
form a full cycle. In our application it can be assumed that,
although the thermal profile has arbitrarily varying ampli-
tude in short term, its pattern will eventually be repeated
given a long enough period, enabling the use of Downing’s
simplified rainflow counting algorithm |21]. Even if the in-
terval does not repeat, as long as it contains many cycles and
subsequent intervals will produce similar amounts of wear,
the proposed modeling approach is valid.

The rainflow counting method satisfies the requirement
we suggested in Section 4.2. Therefore, we will consider its
result as the ground truth value.

The Coffin-Mason equation combined with Miner’s rule
[18] is used to calculate the resulting total number of cycles
to failure for the entire temperature time series. According
to Miner’s rule, for the ith temperature swing for which
the number of cycles to failure is IV;, the damage is 1/N;.
Therefore, assuming Np¢ is the mean number of cycles to
failure for a given thermal profile that contains m cycles,
and the duration of the time series is short compared to the
device lifespan, Nr¢ can be approximated as follows:

m
NTC = m 1 -
Zi:O N;
Thus, the thermal cycling MTTF can be calculated using
the following equation:

(15)

N oot
MTTFpo = M7 (16)
m

where Y ;" | t) is the total duration for the given tempera-
ture time series.

S. COMPONENT-LEVEL MODELING

The failure of any device within a component causes the
component to fail. We assume the temperature variation



among devices within a component is negligible. Large com-
ponents with internally varying temperature can be accu-
rately modeled by treating them as multiple components.
Devices are grouped into components to reduce the compu-
tational complexity compared to performing complete Monte
Carlo simulation on every device in the IC. This section de-
scribes our approach to obtain component temporal failure
distributions based on device-level information.

5.1 Weibull Device Temporal Failure
Distributions with Process Variation

At component level, we consider the impact of intra-die
process variation. Inter-die process variation is handled at
the system level. In Section 4.1, a constant shape parameter
3 was assumed. However, this assumption does not hold in
the presence of process variation. For example, the gate-
oxide thickness may vary across the chip. It is reported that
the Weibull shape parameter for TDDB changes linearly
with the gate-oxide thickness [14]; given the same defect
generation rate, a thinner gate increases the failure proba-
bilities of gates with few defects, thus increasing the variance
of the probability density function, i.e., decreasing the shape
parameter (. If we assume that the shape parameter has a
Gaussian distribution ¢(u, o), where y is the mean and o>
is the variance, component reliability can be expressed as
follows [22]:

R(t) _ e—n ffooo (j)(p,o')*(%)xdz

— o2 (L (17)
()T
Combining Equations 12 and 17 yields
2 (Z% )
5 t ;4,—"7 In ﬁf
(54
R(t)=e (18)

Equation 18 allows us to compute the component reliability
considering intra-die process variation. For thermal cycling,
Equation 17 is sufficient, since we have already taken tem-
poral temperature variation into account with rainflow cy-
cle counting. Note that if the process variation distribution
deviates significantly from the Gaussian distribution, Equa-
tion 17 no longer holds. In that case, Equation 17 should be
re-derived or the approximation method described in Sec-
tion 5.3 should be used.

5.2 Lognormal Device Temporal Failure
Distributions with Process Variation

Given that the shape parameter u of a lognormal temporal
failure distribution has its own distribution due to process
variation, the reliability of a component with n device can
be calculated using the following equation:

o 11 In(t)—p
R(t) :enfioof(:c)ln(é—i erf(i\/zm7 ))dm’ (19)
where f(x) is the probability density function of p. This
equation is too complex to be directly used for system-level
reliability estimation. Simpler component-level reliability
functions can be used to reduce the computational cost of
system-level reliability estimation. Therefore, our goal is to
find a distribution that can approximate the ground truth
component distribution, which is the limiting distribution
for the minimum lifetime of a collection of an arbitrary num-
ber of devices with identical and independent lifetime dis-
tributions.
Statisticians have previously considered a related prob-
lem. Gumbel (1958) showed that for any well-behaved ini-
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Figure 3: Weibull and lognormal fitting results for
a 5,000-device component with process variation.

tial distribution (i.e., one that is continuous and has an in-
verse), only a few models are needed [23]. The relevant
model depends on whether the extreme value of interest is
the maximum or minimum and on whether observations are
bounded from above or below. In the limit, this conclusion is
independent of the distributions of individual components,
as stated by the Extreme Value Theory [23]. Since finding
the minimum is our objective, the Weibull distribution is
appropriate.

Figure 3 shows the ground-truth probability density of a
component containing 5,000 devices, each with a lognormal
temporal failure distribution. The shape parameter p is as-
sumed to be randomly distributed in range [0.3, 0.7] [24]
to model process variation. Lognormal and Weibull distri-
butions are used to fit the ground-truth distribution. The
results show that even under significant process variation,
the Weibull distribution provides an accurate approxima-
tion. Note that the shape parameter of the fitted lognormal
component distribution differs from that of the device distri-
bution. The shape parameters for both the fitted lognormal
and fitted Weibull distributions change with device count,
as explained in Section 7.3. If a direct derivation is infeasible
and the component contains many devices, it is appropriate
to use a fitted Weibull distribution for the component.

5.3 Generalized Lognormal Extreme Value
Distribution (GLEYV)

The lognormal distribution is appropriate for modeling
many device-level failure processes but is inaccurate for com-
ponents containing many devices. The Weibull distribution
is appropriate for modeling failure processes in components
containing many devices but is decreasingly accurate as the
number of devices decreases. It is often useful to model the
reliabilities of small regions containing relatively few devices
in order to ensure that environmental characteristics such as
voltage and temperature are constant. Selecting one of the
two distributions depending on the number of components
would improve accuracy, but is not a perfect solution. For
example, for a system containing 500 components, both log-
normal and Weibull distributions have nearly 10% error in
time to 1% failure (1-TTF).

We use a distribution that is capable of accurately model-
ing the impact of lognormal device failure processes in com-
ponents containing an arbitrary number of devices, which we
refer to as the generalized lognormal extreme value (GLEV)



distribution. The probability density function of the pro-
posed distribution is given by the following equation:

farev(t) = w - fweipur(t) + (1 — w) fiognormar ()

(1))

(1 —w) ( L e—f(““él“”z) (20)
ta\/ﬁ ’
where w, the GLEV parameter, is used to characterize the
relative contribution of its corresponding distribution. The
values of 3 and o in Equation 20 are determined by the num-
ber of devices in the component via curve fitting. The val-
ues of n and p are directly calculated based on the MTTF.
w, which has range [0,1], is also determined based on the
number of devices. When the component has only one de-
vice, w = 0, the GLEV distribution is lognormal. When
the number of devices approaches infinity, w — 1 and the
GLEV distribution approaches the Weibull distribution. It
is possible that there are more accurate non-linear combi-
nation methods to model the component distribution but
our analysis shows that this easy-to-use linear combination
is highly accurate even for the most challenging components
to model, i.e., those with a moderate number of components.
The cumulative distribution function of the GLEV distri-
bution follows:

Forpv(t) = w(1_e—(%)5)+

1 1 In(t) — u])

1—w ,+,erf{7 . (21

(1-u) (5+5 et 2O=2]) ey

Once a GLEV distribution for a component of interest is
derived, it may be used in system reliability analysis.

6. SYSTEM LEVEL MODELING

A system contains multiple components, which need not
be critical. A system may also contain hot or cold spares in
an arbitrary structure [9]. Hot spares operate concurrently
with the protected component(s); cold spares are used only
after the protected component(s) fails. In this section, we
will discuss methods to estimate static or dynamic system
reliability.

6.1 Static System Reliability Estimation

Static reliability is the precomputed time-dependent sur-
vival probability of a system. It is an appropriate design-
time optimization metric for systems with pre-planned, static
responses to component failures. System-level hot and cold
spares can make the direct calculation of system-level static
reliability intractable. For example, assuming a system with
hot spares, whenever a non-critical component fails, task mi-
gration and/or voltage and frequency scaling is performed
to meet the performance requirements, which might change
the thermal profile of the system. As a result, the prob-
ability density function of the components become discon-
tinuous and depends on the accumulated wear when partial
failure occurs. To directly calculate the system MTTF, we
must traverse all states that would permit survival, which
requires solving multi-convolution integrals. The situation
is even more complicated when inter-die process variation is
considered. Therefore, alternative methods are necessary.

If the number of system-level components is limited, it
is possible to use Monte Carlo trials for reliability evalua-
tion. We use a survival lattice to handle arbitrary system
structures. Each state in the survival lattice represents a

unique set of operating components with which the system
can still meet its requirements. States are associated with
pre-computed thermal profiles to accelerate reliability anal-
ysis. With enough Monte Carlo trials, the temporal failure
distribution for any structure of components can be deter-
mined. For failure mechanisms with Weibull device-level
temporal failure distributions, a uniformly distributed ran-
dom number u in range [0, 1] is generated for each com-
ponent. This number represents expected lifetime during
system-level simulation. The expected time to failure for
each component can be obtained using the following equa-
tion:

iy

2 (T
Ei “7%“ Sty
—_n nit
1—e

ti

= u. (22)
There exist two solutions for ¢ from Equation 22, only one
of which is valid. Since u represents the failure probability,
it should increase monotonically with ¢. Thus, the valid
solution t(u) satisfies % > 0. Therefore,

w2420 — nA=u)

t= 2t e a"‘< : ) (23)
3 |
;i
The same procedure can be applied to failure mechanisms
with lognormal device-level temporal failure distributions.
Components with multiple failure mechanisms are modeled
as multiple components connected in series, each of which is

subject to a single failure mechanism.

We take inter-die process variation into consideration dur-
ing Monte Carlo simulation. We assume that the two pa-
rameters g and o in Equation 18 have Gaussian distribu-
tions with pu ~ ¢(u1,01) and o ~ ¢(uz2,03) across all dies.
To model this inter-die process variation, two normal ran-
dom variables with means p1 and p2 and standard variations
o1 and o2 are generated at the beginning of each trial and
are used to replace p and o in Equation 23. The expected
lifetime is also generated. The system-level failure time is
determined using the survival lattice. The probability of sys-
tem survival up to time ¢ can be calculated as the percentage
of trials for which system survives longer than ¢t.

6.2 Dynamic System Reliability Estimation

Systems dynamically adapt to faults in ways that change
the system thermal profile, e.g., task rescheduling and volt-
age and frequency scaling. Reliability up to time ¢ refers
to the overall survival probability in time interval [0, ¢].
However, on-line dynamic measurement-based adaptation
techniques already know that the system has survived thus
far with probability 1. Therefore, performing optimization
based on the static reliability estimate would yield subopti-
mal solutions. Instead, conditional probabilities should be
used. We propose to use the dynamic reliability of the sys-
tem at time t + tinterval, Where tintervar is the time interval
from t to the next time point when dynamic optimization
can be performed, given the reliability numbers of its com-
ponents at time t.

Our model calculates the dynamic reliability using the
following equation:

Rsystem (t + ti7Lte7'vul ‘Rcl ) RCQ T PiCn )7 (24)
where Rc, is the reliability of component 4 at time ¢. Direct
calculation of the dynamic system reliability requires consid-
eration of arbitrary system redundancy structures, for which
Monte Carlo trials are used. In Monte Carlo simulation of
dynamic systems, at the beginning of each trial the com-
ponent ages are the estimated ages obtained in the previous



step. Expected lifetime is no longer uniformly distributed in
range [0, 1]. Instead it is uniformly distributed in range [F',
1], where F' is component’s cumulative failure probability at
the beginning of the Monte Carlo simulation.

7. RESULTS

To evaluate the proposed system-level reliability model-
ing framework, we have performed several simulation-based
studies. Specifically, we compare the accuracy of the rainflow-
based method used in device- and component-level reliability
analysis with other cycle counting methods used in existing
work. We also evaluate the accuracy of the reliability re-
sults obtained by applying our proposed failure distribution
modeling technique to components with device counts rang-
ing from 1 to 50,000. Finally, we evaluate the accuracy and
efficiency of our multi-level reliability modeling technique.
Before presenting these results, we first briefly describe the
setup used in our simulation study.

7.1 Experimental Setup

Our test cases are based on MPSoCs consisting of 4 or 16
homogeneous cores. Each core is based on the Alpha 21264
processor, with a maximum power consumption of 120 W at
4 GHz [25]. All cores are DVFS-enabled and have 7 normal-
ized discrete speed levels similar to those for the Intel Core
Duo [26]: 0.462, 0.615, 0.692, 0.769, 0.846, 0.923, and 1. A
total of 10 task sets consisting of 15 tasks each are randomly
generated. The system load ranges from 60% to 80%. Peri-
odic real-time tasks are used, each of which has a worst-case
execution time, period, and deadline. Task periods are uni-
formly distributed between 50s and 300s. The worst-case
execution time of a task is uniformly distributed between
30% and 60% of its period. Task deadlines and periods
are equal. For each task set, tasks are statically assigned to
cores using the largest-task-first algorithm |27|. The earliest-
deadline-first (EDF) scheduling algorithm is used |28]. The
actual execution time of each task is uniformly distributed
in the range of 50% to 100% of the worst-case execution time
of that task. The simulation is run for each task set (bench-
mark) for a duration of 86,400s (1 day). Each simulation
results in a power profile for each core. Dynamic thermal
analysis was performed using HotSpot [29]. The generated
thermal profiles were used as input to our reliability model-
ing framework (see Figure 1).

For device-level lognormal and Weibull distributions, the
shape parameters are set to 0.5 and 5, respectively [14]. The
reference device MTTF is assumed to be 120 years at 60°C
and the supply voltage is 1.8 V. Intra-die and inter-die pro-
cess variation cause a total of 10% deviation from mean value
for the shape parameters [30]|. One-million trials are used for
Monte Carlo simulation. After one million trials, increasing
the number of trials by 1,000 consistently leads to less than
0.0005% improvement in the resulting MTTF errors.

7.2 Thermal Cycling Results

The mechanism used to count thermal cycles has a sig-
nificant impact on MTTF estimation accuracy. Given that
the rainflow counting method is a widely accepted means to
count variable-loading cycles in the material science field, it
is important to see whether applying it to the device- and
component-level reliability models in ICs leads to MTTF
values that are significantly different from those obtained by
methods typically used in existing MPSoC reliability analy-
sis and optimization work. Unfortunately, existing MPSoC
reliability modeling publications provide little detail on the
actual thermal cycling counting methods used, except that
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Figure 4: Cycle counting result for core 0 normal-
ized to rainflow counting method.

they all assume fixed-amplitude thermal cycles. We there-
fore consider two counting methods: fixed-window size based
counting and peak-valley pair based counting. Specifically,
we have studied the following three setups.

1. 10s Window: In each window of 10s, set the thermal
cycling range to the maximum temperature difference
seen in that window. When computing the number of
cycles, any cycle that contains the maximum temper-
ature difference is counted.

2. 100s Window: This counting method is the same as
the 10s Window except that the window size is in-
creased to 100s.

3. NVP: This method considers every neighboring peak
and valley pair to be a cycle. It records both the peak-
to-valley and valley-to-peak swings.

Since the accuracies of different counting methods depend
on the pattern of the thermal profiles but are independent
of the number of components in the system, we evaluate the
counting methods on the 4-core MPSoC benchmark only.
Each of the thermal cycle counting methods is applied to
the thermal profiles generated by the 4-core benchmarks
and the MTTF of each core due to thermal cycling is ob-
tained. The thermal profiles contain dynamic and random
high-frequency temporal temperature variations. The sim-
ulation results are shown in Figure 4. The 10s Window
overestimates thermal cycling MTTF for almost all of the
benchmarks. Although a small window size allows the high-
frequency cycles to be captured, it breaks down the large
and slow cycles into small segments, thus underestimating
the impact of the most important cycles on MTTF. The
100 s window size method counts the large global cycles, al-
lowing an estimate closer to the rainflow counting method.
However, neglecting high-frequency cycles still results in an
average error of 46.01% and a maximum error of 268.10%
relative to rainflow counting when all 4 cores are considered.
The accuracy of the NVP method is between that of the 10s
Window method and 100s Window method.

Note that the purpose of this evaluation is to show the im-
pact of choosing different thermal cycling models on MTTF
estimation. These results show that for thermal profiles that
contain variable-amplitude thermal cycles, different count-
ing methods yield significantly different results. Therefore
choosing the appropriate counting method is important for
thermal cycling MTTF estimation accuracy. Based on re-
search in the material science community, rainflow counting
appears to be the most appropriate cycle counting method.

10s Window
100s Window



Table 1: Comparisons of Different Failure Distributions

Component | Lognormal (o = 0.5) Lognormal Weibull GLEV

1-TTF 1-TTF 1-TTF 1-TTF

count o MSE %) o) MSE %) 16} MSE %) w MSE %)
1 0.500 | 1.90e-06 | 0.06 |0.500|1.90e-06| 0.06 |2.367|4.17e-05| 41.44 |0.001 | 1.90e-06 | 0.06
10 0.500 | 4.48e-04 | 37.53 |0.291 | 2.26e-05| 10.28 |3.927 | 4.53e-05| 22.46 |0.400 | 4.53e-06 | 5.14
50 0.500 | 1.37e-03 | 46.09 |0.225|7.76e-05 | 13.07 |5.038 | 4.09e-05| 14.60 | 0.588 | 5.70e-06 | 5.58
100 0.500 | 1.91e-03 | 48.37 |0.205|1.10e-04 | 13.67 |5.487|3.97e-05| 12.30 |0.637 | 5.93e-06 | 5.10
500 0.500 | 3.48e-03 | 52.18 | 0.175|2.08e-04 | 13.68 [6.419|3.91e-05| 9.06 |0.713|6.56e-06 | 4.30
1,000 0.500 | 4.30e-03 | 53.37 |0.165|2.98e-04 | 13.57 |6.801 | 3.44e-05| 7.96 |0.733|5.40e-06| 3.78
5,000 0.500 | 6.58e-03 | 55.49 |0.147|4.03e-04 | 13.52 | 7.626 | 3.99e-05| 6.01 |0.777|7.43e-06| 2.93
10,000 0.500 | 7.73e-03 | 56.22 |0.140|4.80e-04 | 13.43 |7.967 | 3.94e-05| 5.35 |0.794 | 7.80e-06 | 2.64
50,000 0.500 | 1.08e-02 | 57.66 |0.129|6.70e-04 | 12.93 |8.680 | 4.16e-05| 4.41 |0.817|8.36e-06| 2.20

7.3 Component-Level Approximated

Distribution Evaluation

We characterize the accuracies of temporal failure distri-
bution functions for components with device counts ranging
from 1 to 50,000. We compare lognormal distribution with
fixed o = 0.5, lognormal distribution with fitted o, Weibull,
and the proposed GLEV distribution. The shape parameters
of all the distributions are obtained using curve fitting. The
GLEV parameter w is also obtained through curve fitting,
starting from the fitted parameters of the corresponding log-
normal and Weibull distributions. The GLEV distribution
should therefore have at least as high accuracy as the log-
normal and Weibull distributions.

The component distribution evaluation results are shown
in Table 1. For all cases, the GLEV distribution gives the
best result both in terms of mean square error (MSE) and
time to one percent failure error (1-TTF). It reduces the
MSE by 5x compared to the minimum MSE of all the other
distributions. Its 1-TTF error is consistently half that of
the second-best distribution. The results also indicate that
a fixed o = 0.5 lognormal temporal failure density function
results in substantial error, often 50%. This error increases
with device count, making it difficult to compensate for.
The fitted lognormal distribution is adequate for compo-
nents with very few devices but inaccurate for components
with many devices. In contrast, the Weibull distribution is
accurate for components containing many devices but inac-
curate for components with few devices. However, neither
lognormal nor Weibull distributions work well for compo-
nents with a moderate number of devices. The GLEV dis-
tribution is consistently accurate regardless of device count.
The GLEV parameter w increases with number of devices,
indicating an increased weight on the Weibull distribution
component. This observation is consistent with the Extreme
Value Theory and our previous analysis.

Figure 5 illustrates fitted lognormal, Weibull, GLEV, and
ground truth curves for a 500-component system. For this
example, the lognormal distribution has the greatest error.
However, the relative qualities of lognormal and Weibull dis-
tributions would be reversed for a system with relatively few
components. The GLEV distributions well approximates the
ground truth distribution.

We also evaluate the accuracy of the Weibull distribution
for components composed of lognormal-distribution devices
with process variation. We assume that the shape param-
eters of the devices are randomly varied with o uniformly
distributed in the range [0.3, 0.7][24]. Table 2 shows the
MSE and 1-TTF errors for fitted lognormal and Weibull
distributions when used to model a system consisting of 1—

50,000 components with varied shape and scale parameters.
The results indicate that when the number of devices in a
component is large, a single Weibull distribution is sufficient,
even in the presence of process variation. The parameters
of the corresponding Weibull distribution can be obtained
from Monte Carlo simulation and curve fitting. However, if
the device count is moderate, using the GLEV distribution
is necessary to avoid significant errors in early life.

7.4 Comparison with Alternative Models

We evaluate the accuracy and speed of the multi-level sys-
tem reliability model and compare it with other system-level
models described in previous work. To make the comparison
fair, we use the same rainflow counting method in all cases.
Our objective is to compare the performance of different
system-level modeling techniques, not that of the thermal
cycling model, which was evaluated in Section 7.2. The fol-
lowing system-level reliability models are used for compari-
son.

1. Exponential: This model assumes the exponential device-
level failure distribution and uses technique called sum
of failure rate (SOFR) to compute the total failure rate
in a system without spares [3].

2. Log-fixed: This model uses a lognormal distribution
for each component with shape parameter o = 0.5. At
system level it uses Monte Carlo simulation to estimate
MTTF [5].

3. Log-simple: This model also assumes lognormal distri-
butions at component level. But instead of performing
Monte Carlo simulation, it uses a Min-Max approach
to calculate the system MTTF [7].

4. Ground truth: This is the ground truth distribution
obtained by performing Monte Carlo simulation on ev-
ery individual device in the system.

In this experiment, we assume that each component con-
tains 5,000 devices. Although larger device counts are also
of interest, the computation time to generate the ground
truth distribution by performing Monte Carlo simulation
considering each device for the entire system is prohibitive.
Note that this is only a concern when comparing reliability
modeling techniques; in practice, the ground truth distribu-
tion would not be computed. Moreover, the quality of the
proposed hierarchical model improves for components with
larger device counts, as described in Section 7.3.

Figure 6 shows the ground truth system MTTF values and
the normalized results for other system reliability models.
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Figure 5: PDFs of the lognormal, Weibull, and GLEV distributions for 500 component system.

Table 2: Comparisons of Different Failure Distributions with Process Variation

Example MPSoC

(a) System MTTF for the 4-core MPSoC benchmarks.

Component Lognormal Weibull GLEV
count o MSE 1-TTF (%) ) MSE 1-TTF (%) w MSE 1-TTF (%)
1 0.364 | 9.90e-07 0.04 3.165 | 1.50e-05 34.99 0.002 | 9.90e-07 0.03
10 0.325 | 5.77e-05 20.58 3.565 | 1.45e-05 17.19 0.699 | 4.69¢-06 8.92
50 0.296 | 1.05e-04 20.16 3.874 | 2.09e-05 15.68 0.713 | 4.68e-06 8.33
100 0.285 | 1.42e-04 21.38 4.028 | 2.08e-05 13.76 0.735 | 4.69e-06 7.18
500 0.248 | 2.44e-04 20.83 4.590 | 2.97e-05 10.88 0.760 | 5.93e-06 5.56
1,000 0.236 | 2.98e-04 20.40 4.787 | 3.44e-05 10.12 0.763 | 5.40e-06 5.14
5,000 0.214 | 4.96e-04 19.86 5.300 | 3.90e-05 8.19 0.797 | 7.18e-06 4.28
10,000 0.205 | 5.94e-04 19.61 5.519 | 4.37e-05 7.46 0.802 | 8.06e-06 3.79
50,000 0.188 | 8.70e-04 18.59 5.984 | 5.62e-05 6.49 0.812 | 1.02e-05 3.25
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(b) System MTTF for the 16-core MPSoC benchmarks.

Figure 6: System-level MTTF comparisons. The MTTF value of the ground truth distribution (in years) is
shown at the top. Results of other models are normalized to the ground truth value.

Some benchmarks have relatively small MTTFs due to large
thermal cycle amplitudes and high peak temperatures. The
proposed hierarchical model has the best performance of all
the models for all the example problems. For the 4-core
benchmarks, the average error is 3.93x better than that of
the second-best modeling approach and the maximum error
is 3.85x better. The average error for the hierarchical model
is 4.2% and the maximum error is 5.9%. For the 16-core
benchmarks, the average error is 5.8% and the maximum
error is 6.0%. The average error is 3.26 X better than the best
alternative. Overall, the average error is improved by 3.60x

compared to a technique using a fixed-parameter lognormal
distribution for components. Note that the 16-core examples
generally have a larger spatial temperature variation than
the 4-core benchmarks.

Table 3 shows the results of comparing the running times
of the models that use Monte Carlo simulation. The run-
ning time of the hierarchical model is related to the system
component count and the size of the survival lattice. If the
number of components is equal to the number of devices,
the running time would degrade to that of the ground truth
simulation.



8.

Table 3: Run Time Comparison

Device Running Time (s)
count | Log-fixed | Multi-level | Ground truth
1 5.71 13.05 15.11
5 5.72 13.09 62.66
10 5.66 13.06 121.74
50 5.68 13.17 574.33
100 5.65 13.10 1137.60
500 5.72 13.15 5631.06
1,000 5.65 12.96 10963.70

CONCLUSION

In this work, we have presented a hierarchical MPSoC
reliability modeling framework. We use direct calculation
to construct component-level temporal failure models from
device-level models and perform Monte Carlo simulation
to determine system-level reliability. Our model considers
intra-die and inter-die process variation at component and
system level. We also implement the rainflow cycle count-
ing algorithm, which enables accurate modeling of variable-
amplitude thermal cycling. Experimental results show that
the hierarchical model improves on the accuracy of models
based on simplifying assumptions about thermal cycling and
temporal failure distributions, resulting in 3.60x reduction
in average error compared to the second best alternative.
The proposed hierarchical model has only 5% average error
in MTTF compared to ground truth distribution but runs
hundreds of times faster for moderate-size components.
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